790
D. G. Batt et al. / Bioorg. Med. Chem. Lett. 15 (2005) 787–791
3. Rankin, S. M.; Conroy, D. M.; Williams, T. J. Mol. Med.
Today 2000, 6, 20.
R2-NH
R
[R2 = 4-F-Ph-(CH2)2-]
O
R'
47
4. Ma, W.; Bryce, P. J.; Humbles, A. A.; Laouini, D.;
Yalcindag, A.; Alenius, H.; Friend, D. S.; Oettgen, H. C.;
Gerard, C.; Geha, R. S. J. Clin. Invest. 2002, 109, 621.
5. Humbles, A. A.; Lu, B.; Friend, D. S.; Okinaga, S.; Lora,
J.; Al-garawi, A.; Martin, T. R.; Gerard, N. P.; Gerard, C.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1479.
6. Lilly, C. M.; Woodruff, P. G.; Camargo, C. A., Jr.;
Nakamura, H.; Drazen, J. M.; Nadel, E. S.; Hanrahan, J.
P. J. Allergy Clin. Immunol. 1999, 104, 786.
a or b
Y
O
R2
N
X
R2
N
c or d
R
R
O
R'
R'
7. Ying, S.; Meng, Q.; Zeibecoglou, K.; Robinson, D. S.;
Macfarlane, A.; Humbert, M.; Kay, A. B. J. Immunol.
1999, 163, 6321.
48 (X = COOEt)
50 (X = CN)
49 (Y = OH)
51 (Y = NH2)
8. Justice, J. P.; Borchers, M. T.; Crosby, J. R.; Hines, E. M.;
Shen, H. H.; Ochkur, S. I.; McGarry, M. P.; Lee, N. A.;
Lee, J. J. Am. J. Physiol. Lung Cell Mol. Physiol. 2003,
284, L169.
9. Elias, J. A.; Lee, C. G.; Zheng, T.; Ma, B.; Homer, R. J.;
Zhu, Z. J. Clin. Invest. 2003, 111, 291.
f
O
e
R2-NH2
CN
R2-NH
10. Wacker, D. A.; Santella, J. B., III; Gardner, D. S.; Varnes,
J. G.; Estrella, M.; DeLucca, G. V.; Ko, S. S.; Tanabe, K.;
Watson, P. S.; Welch, P. K.; Covington, M. B.; Stowell,
N. C.; Wadman, E. A.; Davies, P.; Solomon, K. A.;
Newton, R. C.; Trainor, G. L.; Friedman, S. M.; Decicco,
C. P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2002, 12,
1785.
11. Varnes, J. G.; Gardner, D. S.; Santella, J. B., III; Duncia,
J. V.; Estrella, M.; Watson, P. S.; Clark, C. M.; Ko, S. S.;
Welch, P.; Covington, M.; Stowell, N.; Wadman, E.;
Davies, P.; Solomon, K.; Newton, R. C.; Trainor, G. L.;
Decicco, C. P.; Wacker, D. A. Bioorg. Med. Chem. Lett.
2004, 14, 1645.
12. De Lucca, G. V.; Kim, U. T.; Johnson, C.; Vargo, B. J.;
Welch, P. K.; Covington, M.; Davies, P.; Solomon, K. A.;
Newton, R. C.; Trainor, G. L.; Decicco, C. P.; Ko, S. S. J.
Med. Chem. 2002, 45, 3794.
13. (a) Gong, L.; Hogg, J. H.; Collier, J.; Wilhelm, R. S.;
Soderberg, C. Bioorg. Med. Chem. Lett. 2003, 13, 3597; (b)
Gong, L.; Kertezs, D. J.; Smith, D. B.; Talamas, F. X.;
Wilhelm, R. S. Eur. Patent Appl. EP 903349, 1999; (c)
Ancliff, R. A.; Cook, C. M.; Eldred, C. D.; Gore, P. M.;
Harrison, L. A.; Hodgson, S. T.; Judd, D. B.; Keeling, S.
E.; Lewell, X. Q.; Robertson, G. M.; Swanson, S. PCT
Intl. Pat. Appl. WO 02/26723, 2002.
52
Scheme 2. Reagents and conditions: (a) diethyl malonate, NaOEt,
toluene, reflux, 75%; (b) ethyl cyanoacetate, NaH, THF, reflux (45–
75%); or KOBut, t-BuOH, THF, reflux (75–96%); (c) LiAlH4, THF,
reflux (40%); (d) BH3, THF, reflux, then HOAc (30–60%); (e) ethyl
cyanoacetate, neat, 100°C, 52%; (f) ethyl b-methylpropenoate, KOBut,
t-BuOH, THF, reflux, 85%.
dimethyl acrylamide 47 (R = R0 = Me) was observed
under a variety of conditions. In order to take advantage
of the increased electrophilicity of esters over amides,
the order of assembly was reversed. Thus, the cyano-
acetamide 52 was prepared from ethyl cyanoacetate
and 4-fluorophenethylamine, followed by base-catalyzed
addition to ethyl b-methylpropenoate, to provide the de-
sired imide 50 (R = R0 = Me) in excellent yield. Borane
reduction provided 51 (R = R0 = Me).
In conclusion, compounds of general structure 4, con-
ceptually derived from 1 and 2, bound to CCR3 with
good potency and also displayed functional antagonism
of the eotaxin-induced effects on human eosinophils.
Broad features of the SAR were similar to the previ-
ously-reported series. The greater conformational free-
dom of 4 relative to 1 and 2 seemed to be reflected in
a relatively high tolerance for changes in chain length
and absolute stereochemistry, and may also be the cause
of the relatively weaker inhibition of eotaxin-induced
chemotaxis than was reported for the earlier com-
pounds. Further work addressing these issues will be re-
ported in due course.
14. The binding assay was carried out using 125I-labelled
human eotaxin and CHO cells stably transfected with a
gene encoding human CCR3 as described in Ref. 12. In
some cases cells stably transfected with a chimeric recep-
tor, consisting of the intracellular domain of human CCR2
with the extracellular and transmembrane domains of
human CCR3, were used. This variation was found to give
results nearly identical to those obtained using the native
CCR3 receptor; details will be published in due course.
The value reported represents the average of three
determinations with a standard deviation of 20–50% of
the mean value.
15. The Ca2+ mobilization assay was carried out using eotaxin
and human eosinophils preloaded with a calcium-depend-
ent fluorescent dye, as described in Ref. 12.
16. The chemotaxis assay was carried out using eotaxin and
human eosinophils in 96-well chemotaxis chambers, as
described in Ref. 12.
Acknowledgements
We gratefully acknowledge the assistance of A. J. Mical
and K. A. Rathgeb for determination of the enantio-
meric purity of 12 and 13 by chiral HPLC.
17. Carceller, E.; Merlos, M.; Giral, M.; Balsa, D.; Garcia-
Rafanell, J.; Forn, J. J. Med. Chem. 1996, 39, 487.
18. Hilpert, K.; Ackermann, J.; Banner, D. W.; Gast, A.;
References and notes
´
Gubernator, K.; Hadvary, P.; Labler, L.; Muller, K.;
¨
Schmid, G.; Tschop, T. B.; van de Waterbeemd, H.
J. Med. Chem. 1994, 37, 3889.
1. Carter, P. H. Curr. Opin. Chem. Biol. 2002, 6, 510.
2. Gao, Z.; Metz, W. A. Chem. Rev. 2003, 103, 3733.