existing kinetic resolutions of alcohols, we discovered the
combination of a Pd(II) salt and (-)-sparteine effectively
catalyzes the oxidative kinetic resolution of secondary
benzylic alcohols with molecular oxygen as the terminal
oxidant.6-10 Aerobic oxidative kinetic resolution has
recently been applied to the synthesis of various phar-
maceuticals.11 A noteworthy limitation of this methodol-
ogy is the low selectivity (krel values <8) for the oxidation
of saturated aliphatic alcohols and allylic alcohols.12
Herein we wish to disclose an improved Pd(II)-catalyzed
aerobic oxidative kinetic resolution of secondary alcohols,
which circumvents this limitation, as well as the sub-
strate scope and application of the Pd(II)/(-)-sparteine
catalyst system in the oxidative desymmetrization of
meso-diols.
Scop e of En a n tioselective
P a lla d iu m (II)-Ca ta lyzed Aer obic Alcoh ol
Oxid a tion s w ith (-)-Sp a r tein e
Sunil K. Mandal, David R. J ensen,
J acob S. Pugsley, and Matthew S. Sigman*
Department of Chemistry, University of Utah,
315 South 1400 East, Salt Lake City, Utah 84112
sigman@chem.utah.edu
Received December 28, 2002
Ab st r a ct : Evaluation of the substrate scope for Pd(II)/
(-)-sparteine catalyzed aerobic oxidative kinetic resolution
of secondary alcohols is disclosed. An improved system is
found with use of tert-butyl alcohol solvent in which benzylic
and aliphatic alcohols as well as alcohols containing olefins
are effectively oxidatively resolved. For substrates that
successfully undergo oxidative kinetic resolution, krel values
are generally between 10 and 20. Successful scale-up of
various substrates to 10-mmol scale is described. Extension
to oxidative desymmetrization of 1,3-meso-diols is successful
with enantiomeric excesses ranging from 78 to 85%.
With the selection of sec-phenethyl alcohol as the
substrate to standardize the initial reaction conditions,
it is possible that optimal conditions for other substrate
classes may have been overlooked. Accordingly, several
reaction parameters were reevaluated with use of the
aliphatic alcohol, 3,3-dimethyl-2-butanol, as the standard
substrate. As a first step in this process, several solvents
were assessed for the oxidative kinetic resolution, using
5 mol % of Pd(CH3CN)2Cl2 in combination with 20 mol
% of (-)-sparteine at 65 °C. In this evaluation, tert-butyl
alcohol, which was the second best in our original solvent
evaluation for sec-phenethyl alcohol,6 gave the highest
selectivity and conversions followed by 1,2-dichloroethane
(Figure 1). Pd(OAc)2 was also evaluated with several sol-
vents under similar conditions. The use of Pd(OAc)2 in
all solvents, except acetonitrile, gave poorer oxidative
kinetic resolutions than PdCl2 and the best results
were found by using 1,2-dichloroethane to give 70.4%
ee at 60.2% conversion, a krel value of 5.5. From the
initial screens, tert-butyl alcohol in combination with
Pd(CH3CN)2Cl2 and (-)-sparteine is clearly the best
system for oxidative kinetic resolution of this aliphatic
Chiral alcohols are ubiquitous in both natural products
and pharmaceuticals. For this reason, access to enantio-
merically enriched chiral alcohols is an important prob-
lem in organic synthesis. Of the many methods to
synthesize enantiomerically enriched alcohols, kinetic
resolutions are particularly attractive since racemic
alcohols are often readily available and inexpensive.
Kinetic resolution strategies of alcohols range from
epoxidation of allylic alcohols,1 to oxidative methods,2 to
resolution via acylation either by designed catalysts3 or
enzymes,4 to Mitsunobu strategies.5 As an alternate to
(1) Epoxidation: Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada,
Y.; Ikeda, M.; Sharpless, K. B. J . Am. Chem. Soc. 1981, 103, 6237.
(2) Recent oxidative approaches: (a) Sun, W.; Wang, H.; Xia, C.;
Li, J .; Zhao, P. Angew. Chem., Int. Ed. 2003, 42, 1042. (b) Masutani,
K.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 5119.
(c) Nishibayashi, I.; Takei, I.; Uemura, S.; Hidai, M. Organometallics
1999, 18, 2291. (d) Gross, Z.; Ini, S. Org. Lett. 1999, 1, 2077 (e)
Hashiguchi, S.; Fujii, A.; Haack, K.-J .; Matsumura, K.; Ikariya, T.;
Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 288. (f) Rychnovsky,
S. D.; McLernon, T. L.; Rajapakse, H. J . Org. Chem. 1996, 61, 1194.
(3) Kinetic resolutions that have previously been accomplished by
using catalytic acylation: (a) Lin, M.-H.; Rajanbabu, T. V. Org. Lett.
2002, 4, 1607 (b) Vedejs, E.; MacKay, J . A. Org. Lett. 2001, 3, 535. (c)
Copeland, G. T.; Miller, S. J . J . Am. Chem. Soc. 2001, 123, 6496. (d)
Bellemine-Laponnaz, S.; Tweddell, J .; Ruble, J . C.; Breitling, F. M.;
Fu, G. C. Chem. Commun. 2000, 1009. (e) J arvo, E. R.; Copeland, G.
T.; Papaioannou, N.; Bonitatebus, P. J ., J r.; Miller, S. J . J . Am. Chem.
Soc. 1999, 121, 11638. (f) Vedejs, E.; Daugulis, O. J . Am. Chem. Soc.
1999, 121, 5813. (g) Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem.
Lett. 1999, 265. (h) Miller, S. J .; Copeland, G. T.; Papaioannou, N.;
Horstmann, T. E.; Ruel, E. M. J . Am. Chem. Soc. 1998, 120, 1629. (i)
Ruble, J . C.; Tweddell, J .; Fu, G. C. J . Org. Chem. 1998, 63, 2794. (j)
Ruble, J . C.; Latham, H. A.; Fu, G. C. J . Am. Chem. Soc. 1997, 119,
1492. (k) Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J . Am. Chem.
Soc. 1997, 119, 3169. Using benzoylation: (l) Iwata, T.; Miyake, Y.;
Nishibayashi, Y.; Uemura, S. J . Chem. Soc., Perkin. Trans. 1 2002,
154 and refs 7 and 8 cited therein.
(5) (a) Chandrasekhar, S.; Kulkarni, G. Tetrahedron: Asymmetry
2002, 13, 615. (b) Li, Z.; Zhou, Z.; Wang, L.; Zhou, Q.; Tang, C.
Tetrahedron: Asymmetry 2002, 13, 145. (c) Hulst, R.; Basten, A.;
Fitzpatrick, K.; Kellog, R. M. J . Chem. Soc., Perkin. Trans. 1 1995,
2961.
(6) J ensen, D. R.; Pugsley, J . S.; Sigman, M. S. J . Am. Chem. Soc.
2001, 123, 7475.
(7) For a related oxidative kinetic resolution, see: (a) Ferreira, E.
M.; Stoltz, B. M. J Am. Chem. Soc. 2001, 123, 7725. (b) Bagdanoff, J .
T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835.
(8) For a review of the use of molecular oxygen as a terminal oxidant
in asymmetric catalysis, see: Sigman, M. S.; J ensen, D. J .; Rajaram,
S. Curr. Opin. Drug Discovery Dev. 2002, 5, 860-869.
(9) For examples of Pd(II)-catalyzed aerobic oxidations, see: (a)
Schultz, M. J .; Park, C.; Sigman, M. S. Chem. Commun. 2002, 3034-
3035. (b) Ten Brink, G.-J .; Arends, I. W. C. E.; Sheldon, R. A. Adv.
Synth. Catal. 2002, 344, 355-369. (c) Kakiuchi, N.; Maeda, Y.;
Nishimura, T.; Uemura S. J . Org. Chem. 2001, 66, 6620. (d) ten Brink,
G.-J .; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636. (e)
Peterson, K. P.; Larock, R. C. J . Org. Chem. 1998, 62, 3185. (f) Kaneda,
K.; Fujii, M.; Morioka, K. J . Org. Chem. 1996, 61, 4502. (g) Gomez-
Bengoa, E.; Noheda, P.; Echavarren, A. M. Tetrahedron Lett. 1994,
35, 7097. (h) Blackburn, T. F.; Schwartz, J . J . Chem. Soc., Chem.
Commun. 1977, 157.
(4) (a) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic
Chemistry; Pergamon: Oxford, UK, 1994; Chapter 2. (b) Burgess, K.;
J ennings, L. D. J . Am. Chem. Soc. 1991, 113, 6129. (c) Burgess, K.;
J ennings, L. D. J . Org. Chem. 1990, 55, 1138. (d) Burgess, K.; Cassidy,
J .; Henderson, I. J . Org. Chem. 1991, 56, 2050.
(10) (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J . Org. Chem.
1999, 64, 6750. (b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S.
Tetrahedron Lett. 1998, 39, 6011.
(11) Sudalai, A.; Ali, I. S. Tetrahedron Lett. 2002, 43, 5435.
(12) See Supporting Information for details.
10.1021/jo0269161 CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/07/2003
4600
J . Org. Chem. 2003, 68, 4600-4603