D
R. Rengarasu, M. E. Maier
Letter
Synlett
References and Notes
14
11
(1) Schieferdecker, S.; König, S.; Weigel, C.; Dahse, H.-M.; Werz, O.;
Nett, M. Chem. Eur. J. 2014, 20, 15933.
(2) Surup, F.; Viehrig, K.; Mohr, K. I.; Herrmann, J.; Jansen, R.;
Müller, R. Angew. Chem. Int. Ed. 2014, 53, 13588.
7
HO
OTIPS
a) s-BuLi, THF, –78 °C
8
5
6
OTIPS
b) addition of aldehyde 37
Br
(3) Kwon, Y.; Schulthoff, S.; Dao, Q. M.; Wirtz, C.; Fürstner, A. Chem.
Eur. J. 2018, 24, 109.
(4) (a) Wolling, M.; Kirschning, A. Eur. J. Org. Chem. 2018, 648.
(b) Surup, F.; Steinmetz, H.; Mohr, K.; Viehrig, K.; Müller, R.;
Nett, M.; Schieferdecker, S.; Dahse, H.-M.; Wolling, M.;
Kirschning, A. WO 2016005049, 2016.
(5) Hanessian, S.; Ugolini, A.; Dubé, D.; Glamyan, A. Can. J. Chem.
1984, 62, 2146.
(6) Yadav, J. S.; Gopala Rao, Y.; Ravindar, K.; Subba Reddy, B. V.;
Narsaiah, A. V. Synthesis 2009, 3157.
(7) Smith, A. B. III.; Chen, S. S.-Y.; Nelson, F. C.; Reichert, J. M.;
Salvatore, B. A. J. Am. Chem. Soc. 1997, 119, 10935.
(8) (a) Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853. (b) Huang, Z.;
Negishi, E.-i. Org. Lett. 2006, 8, 3675. (c) Zhao, Y.; Snieckus, V.
Org. Lett. 2014, 16, 390.
O
O
OPMB
27
1
38
12
11
OTr
OTr
7
HO
OTIPS
a) s-BuLi, THF, –78 °C
8
5
6
OTIPS
b) addition of aldehyde 37
Br
O
O
OPMB
22
1
39
12
11
OTr
O
OTIPS
7
DMP, CH2Cl2
r.t. (71%)
8
5
6
O
O
OPMB
(9) For a related procedure, see: Imagawa, H.; Tsuchihashi, T.; Singh,
R. K.; Yamamoto, H.; Sugihara, T.; Nishizawa, M. Org. Lett. 2003,
5, 153.
(10) For a related Wittig reaction on an -(trialkylsilyloxy)methyl
ketone, see: Jung, M. E.; van den Heuvel, A.; Leach, A. G.; Houk,
K. N. Org. Lett. 2003, 5, 3375.
1
40
Scheme 5 Attempts to couple vinyl bromides 27 and 22 with aldehyde
37. Only the vinyllithium derivative of bromide 22 reacted with alde-
hyde 37.
(11) (a) Sánchez, L. G.; Castillo, E. N.; Maldonado, H.; Chávez, D.;
Somanathan, R.; Aguirre, G. Synth. Commun. 2007, 38, 54.
(b) Ogibin, Y. N.; Starostin, E. K.; Aleksandrov, A. V.; Pivnitsky, K.
K.; Nikishin, G. I. Synthesis 1994, 901.
(12) (a) Ghosh, A. K.; Gong, G. J. Org. Chem. 2006, 71, 1085.
(b) Kaliappan, K. P.; Ravikumar, V. J. Org. Chem. 2007, 72, 6116.
(c) Taaning, R. H.; Thim, L.; Karaffa, J.; Campaña, A. G.; Hansen,
A.-M.; Skrydstrup, T. Tetrahedron 2008, 64, 11884.
(13) (a) Schmidt, T.; Kirschning, A. Angew. Chem. Int. Ed. 2012, 51,
1063. (b) Bluhm, N.; Kalesse, M. Synlett 2015, 26, 797.
(14) (a) Hiebel, M.-A.; Pelotier, B.; Piva, O. Tetrahedron Lett. 2010, 51,
5091. (b) Tomas, L.; Boije af Gennäs, G.; Hiebel, M. A.; Hampson,
P.; Gueyrard, D.; Pelotier, B.; Yli-Kauhaluoma, J.; Piva, O.; Lord, J.
M.; Goekjian, P. G. Chem. Eur. J. 2012, 18, 7452.
ylic acid function to construct an acyclic precursor of
gulmirecin B would be possible. A C1–C7 aldehyde 37 was
prepared through an Evans alkylation to set the C2 stereo-
genic center and an ADH reaction on the derived enoate 33
to generate the dihydroxy carbonyl unit at the C5–C7 termi-
nus. The vinyl bromides 22 (C8–C12 fragment) and 27 (C8–
C14 fragment) were prepared by routine steps from malic
acid. Initial investigations showed that neither the vinyllith-
ium derivative of 27 nor that of 22 added to the Weinreb
amide of 35. Whereas the vinyllithium derivative of 27 did
not add to aldehyde 37, the vinyllithium species of the C8–
C12 fragment 22 did react with aldehyde 37.
(15) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 11360.
(16) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483.
(17) C1–C12 fragment 39
Funding Information
Vinyl bromide 22 (0.15 g, 0.25 mmol) was dried by dissolving it
in a 1:1 mixture of benzene and toluene (3 mL), followed by
evaporation of the solvents using a Rotavapor and placing the
residue under a high vacuum for 1 h. THF (1.5 mL) was then
added under argon and the flask was cooled to –78 °C. A 1.4 M
solution of s-BuLi in cyclohexane (0.21 mL, 0.30 mmol) was
added dropwise and the mixture was stirred for 30 min at –78
°C before a solution of aldehyde 37 (0.14 g, 0.43 mmol) in THF
(1.5 mL) was added dropwise. After completion of the addition,
the mixture was stirred at –78 °C for 2 h and then at r.t. for 1 h.
Finally, the mixture was treated with sat. aq NH4Cl solution (5
mL). The layers were separated, and the aqueous layer was
extracted with EtOAc (2 × 8 mL). The combined organic layers
were washed with sat. aq NaCl (5 mL), dried (Na2SO4), filtered,
and concentrated under reduced pressure. The crude allylic
alcohol 39 (yield: 86 mg; dr = 10:4) was used in the next reac-
tion without chromatographic purification. HRMS (ESI-TOF):
Financial support by the state of Baden-Württemberg is gratefully ac-
knowledged.()
Acknowledgment
We thank the student Fotis Fotiakis (University of Tübingen) for help
with the scale-up of some steps.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E