dibenzyl (7 mg, 38 mmol). The reaction was performed at
60 °C for 54 h. These reaction mixtures contained
hydrosilylated product A, dehydrosilylated product B, and
dimer C. The NMR yields of these products were summarized
in Eq. 4. 1H NMR for A (400 MHz, C6D6, 298 K): δ 5.67 (s, 1H,
SiH), 4.95 (q, 1H, CH, J = 6.4 Hz), 1.42 (d, 3H, CH3, J = 6.4
36, 2902-2913.
(4) F. G. Fontaine, R.-V. Nguyen, D. Zargarian, Can. J. Chem.
2003, 81, 1299-1306.
(5) (a) J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem.
Soc. 1957, 79, 974-979. (b) I. E. Markó, S. Stérin, O. Buisine,
G. Mignani, P. Branlard, B. Tinant, J. P. Declercq, Science 2002,
298, 204-206. (c) Y. Nishihara, M. Itazaki, K. Osakada, K.
Tetrahedron Lett. 2002, 43, 2059-2061. (d) M. Itazaki, Y.
Nishihara, K. Osakada, K. J. Org. Chem. 2002, 67, 6889-6895.
(e) D. Troegel, J. Stohrer, Coord. Chem. Rev. 2011, 255,
1440-1459. (f) Y. Nakajima, S. Shimada, RSC Adv. 2015, 5,
20603-20616. (g) T. Iimura, N. Akasaka, T. Iwamoto,
Organometallics 2016, 35, 4071-4076.
(6) (a) A. D. Petrov, S. I. Sadykh-Zade, Doklady Akad. Nauk S.
S. S. R. 1958, 121, 119–122; Chem. Abstr. 1959, 53, 1207b.
(b) S. I. Sadykh-Zade, A. D. Petrov, Zhur. Obschei Khim. 1959,
29, 3194–3198; Chem. Abstr. 1960, 54, 12978e. (c) A. P.
Barlow, N. M. Boag, F. G. A. Stone, J. Organomet. Chem. 1980,
191, 39-47. (d) H. Yamashita, N. P. Reddy, M. Tanaka,
Organometallics 1997, 16, 5223-5233.
1
Hz). H NMR for B (400 MHz, C6D6, 298 K): δ 5.89 (s, 1H,
SiH), 4.89 (d, 1H, = CH2, J = 2.4 Hz), 4.65 (d, 1H, = CH2, J =
2.4 Hz). 1H NMR for C (400 MHz, C6D6, 298 K): δ 5.89 (s, 1H,
SiH). These data were consistent with the literature.
Acknowledgement
This work was financially supported by Grants-in-Aid for
Scientific Research (B) (No. 17H03029), (C) (No. 25410061),
and Challenging Exploratory Research (26620040) from Japan
Society for Promotion of Science, and by Dynamic Alliance for
Open Innovation Bridging. We thank our colleagues in the
Suzukakedai Materials Analysis Division, Technical
Department, Tokyo Institute of Technology.
References
(7) (a) K. Yamamoto, T. Hayashi, M. Kumada, J. Organomet.
Chem. 1972, 46, C65-C67. (b) T. Hayashi, K. Yamamoto, M.
Kumada, J. Organomet. Chem. 1976, 112, 253-262. (c) W. R.
Cullen, S. V. Evans, N. -F. Han, J. Trotter, Inorg. Chem. 1987,
26, 514-519. (d) V. V. Zuev, D. A. de Vekki, Phosphorus, Sulfur,
and Silicon, 2005, 180, 2071-2083. (e) M. R. Buchner, B.
Bechlars, K. Ruhland, J. Organomet. Chem. 2013, 60-67. See
also, M. R. Buchner, B. Bechlars, B. Wahl, K. Ruhland,
Organometallics 2013, 32, 1643-1653.
(8) (a) M. Tanabe, M. Kamono, K. Tanaka, K. Osakada,
Organometallics 2017, 36, 1929-1935. (b) K. Tanaka, M.
Kamono, M. Tanabe, K. Osakada, Organometallics 2015, 34,
2985-2990.
(9) The hydrosilylation products in this study tend to
decompose slowly under air and moisture, which rendered their
isolation difficult. We treated the hydrosilylation product with
NBu4F, and isolated the resulting (3-vinyl)benzyl alcohol after
purification by silica gel chromatography (Hexane/AcOEt =
7:3) in 70%. The hydrosilylation of 10-undecenal with H2SiPh2
in an NMR-scale formed H2C=CH(CH2)9OSiHPh2 with high
selectivity, but isolation of the product nor its desilylated
alcohol was not feasible.
(1) (a) I. Ojima, M. Nihonyanagi, Y. Nagai, J. Chem. Soc.,
Chem. Commun. 1972, 938. (b) I. Ojima, T. Kogure, Y. Nagai,
Tetrahedron Lett. 1974, 15, 1889-1892. (c) Ojima, I.; Kogure,
T.; Nagai, Y. Chem. Lett. 1975, 4, 985-988. (d) W.-L. Duan, M.
Shi, G. B. Rong, Chem. Commun. 2003, 2916-2917. (e) T.
Hayashi, K. Yamamoto, M. Kumada, Tetrahedron Lett. 1975,
16, 3-6. (f) T. Hayashi, C. Hayashi, Y. Uozumi, Tetrahedron
Asymm. 1995, 6, 2503-2506. (g) H. Brunner, R. Riepl, Angew.
Chem., Int. Ed. Engl. 1982, 21, 377-378. (h) H. Brunner, G.
Riepl, H. Weitzer, Angew. Chem., Int. Ed. Engl. 1983, 22,
331-332. (i) H. Brunner, R. Ströriko, B. Nuber, Tetrahedron
Asym. 1998, 9, 407-422. (j) M. Sawamura, R. Kuwano, Y. Ito,
Angew. Chem., Int. Ed. Engl. 1994, 33, 111-113. (k) G.
Hamasaka, A. Ochida, K. Hara, M. Sawamura, Angew. Chem.,
Int. Ed. 2007, 46, 5381-5383. (l) L. H. Gade, V. César, S.
Bellemin-Laponnaz, Angew. Chem., Int. Ed. 2004, 43,
1014-1017. (m) V. César, S. Bellemin-Laponnaz, H. Wadepohl,
L. H. Gade, Chem. Eur. J. 2005, 11, 2862-2873.
(2) (a) B. H. Lipshutz, K. Noson, W. Chrisman, J. Am. Chem.
Soc. 2001, 123, 12917-12918. (b) B. H. Lipshutz, A, Lower,K.
Noson, Org. Lett. 2002, 4, 4045-4048. (c) B. H. Lipshutz, K.
Noson, W. Chrisman, A. Lower, J. Am. Chem. Soc. 2003, 125,
8779-8789. (d) D.-W. Lee, J. Yun, Tetrahedron Lett. 2004, 45,
5415-5417. (e) B. H. Lipshutz, B. A. Frieman, Angew. Chem.
Int. Ed. 2005, 44, 6345-6348. (f) J. Yun, D. Kim, H. Yun,
Chem. Commun. 2005, 5181-5183.
(10) S. Sakaki. N. Mizoe, M. Sugimoto, Organometallics 1998,
17, 2510-2523.
(11) I. Ojima, T. Kogure, M. Kumagai, S. Horiuchi, T. Sato, J.
Organomet. Chem. 1976, 122, 83-97.
(12) C. Reyes, A. Prock, W. P. Giering, Organometallics 2002,
21, 546-554.
(3) (a) H. Brunner, K. Fisch, J. Organomet. Chem. 1991, 412,
C11-C13. (b) P. Buchgraber, L. Toupet, V. Guerchais,
Organometallics 2003, 22, 5144-5147. (c) H, Nishiyama, A.
Furuta, Chem. Commun. 2007, 760-762. (d) S. Hosokawa, J. Ito,
H. Nishiyama, Organometallics 2010, 29, 5773-5775. (e) N. S.
Shaikh, K. Junge, M. Beller, Org. Lett. 2007, 9, 5429-5432. (f)
N. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem.
Int. Ed. 2008, 47, 2497-2501. (g) A. M. Tondreau, E.
Lobkovsky, P. J. Chirik, Org. Lett. 2008, 10, 2789-2792. (h) A.
M. Tondreau, J. M. Darmon, B. M. Wile, S. K. Floyd, E.
Lobkovsky, P. J. Chirik, Organometallics 2009, 28, 3928-3940.
(i) B. K. Langlotz, H. Wadepohl, L. H. Gade, Angew. Chem. Int.
Ed. 2008, 47, 4670-4674. (j) J. Yang, T. Don Tilley, Angew.
Chem. Int. Ed. 2010, 49, 1-4. (k) F. Jiang, D. Bézier, J. B.
Sortais, C. Darcel, Adv. Synth. Catal. 2011, 353, 239-244. (l)
K. Muller, A. Schubert, T. Jozak, A. Ahrens-Botzong, V.
Schünemann, W. R. Thiel, ChemCatChem 2011, 3, 887-892.
(m) T. Bleith, L. H. Gade, J. Am. Chem. Soc. 2016, 138,
4972-4983. (n) C. Johnson, M. Alrecht, Organometallics 2017,
(13) T. W. Lyons, M. Brookhart, Chem. Eur. J. 2013, 19,
10124-10127.
(14) T. K. Mukhopadhyay, C. Ghosh, M. Flores, T. L. Groy, R.
J. Trovitch, Organometallics 2017, 36, 3477-3483.
(15) (a) S. C. Chakraborty, J. A. Krause, H. Guan, H.
Organometallics 2009, 28, 582-586. (b) H. Kaur, F. K. Zinn, E.
D. Stevens, S. P. Nolan, Organometallics 2004, 23, 1157-1160.
(c) S. Díez-González, S. P. Nolan, Acc. Chem. Res. 2008, 41,
349-358. (d) T. Bleith, L. H. Gade, J. Am. Chem. Soc. 2016,
138, 4972-4983.
(16) G. Z. Zheng, T. H. Chan, Organometallics 1995, 14,
70-79.
(17) (a) S. Park, M. Brookhart, Organometallics 2010, 29,
6057-6064. (b) C. Cheng, M. Brookhart, Angew Chem. Int. Ed.
2012, 51. 9422-9424. (c) W. Wang, P. Gu, Y. Wang, H. Wei,
Organometallics 2014, 33, 847-857. (d) T. T. Metsänen, P.
Hrobárik, H. F. T. Klare, M. Kaupp, M. Oestreich, J. Am. Chem.
Soc. 2014, 136, 6912-6915.