Communication
ChemComm
´
4 (a) V. Ruben, Chem. Rev., 2021, 121, 162–226; (b) Y. Wang,
E. A. F. Fordyce, F. Chen and H. Lam, Angew. Chem., Int. Ed.,
2008, 47, 7350–7353; (c) S. Ma, J. Zhang, Y. Cai and L. Lu, J. Am.
Chem. Soc., 2003, 125, 13954–13955; (d) H. Zhang, K. Wang,
B. Wang, H. Yi, F. Hu, C. Li and J. Wang, Angew. Chem., Int. Ed.,
2014, 53, 13234–13238; (e) B. R. Elling and Y. Xia, J. Am. Chem. Soc.,
2015, 137, 9922–9926.
5 (a) M. Rubin, M. Rubina and V. Gevorgyan, Chem. Rev., 2007, 107,
3117–3179; (b) I. Marek, S. Simaan and A. Masarwa, Angew. Chem.,
´
Int. Ed., 2007, 46, 7364–7376; (c) S. Mata, L. A. Lopez and R. Vicente,
Angew. Chem., Int. Ed., 2018, 57, 11422–11426; (d) S. Mata,
´
L. A. Lopez and R. Vicente, Angew. Chem., Int. Ed., 2017, 56,
Scheme 3 Diverse transformations.
7930–7934; (e) Y. Deng, C. Jing, P. Y. Zavalij and M. P. Doyle, Org.
Lett., 2015, 17, 4312–4315; ( f ) J. T. Bauer, M. S. Hadfield and
A.-L. Lee, Chem. Commun., 2008, 6405–6407.
under the catalytic Rh2(OAc)4 conditions. The obtained dicar-
bonyl 1,3-dienes are unique and versatile intermediates in
synthetic chemistry. For instance, the dicarbonyl groups could
be efficiently reduced to 1, 4-diol 4aa in 92% isolated yield
(Scheme 3a).15 A diazo transfer reaction was then carried out
with p-acetamidobenzenesulfonyl azide (p-ABSA) and DBU.
Surprisingly, 3-diazo functionalized pyridine 5aa was obtained
in 67% yield (Scheme 3b). The reaction might be going through
an intramolecular 6p-electrocyclization process to construct a
pyridine ring (for details, see ESI†).16 Trisubstituted pyrrole
could be isolated through condensation with 2.0 equivalent
aniline (Scheme 3c).17 Notably, the 1,3-diene 3aa could be easily
transformed into substituted 2H-pyran with a quaternary car-
bon centre 7aa (Scheme 3d).18
In summary, an expedient method to synthesize highly
functionalized 1,3-diene derivatives from acetate substituted
cyclopropenes and enaminones has been described. The reac-
tion is believed to undergo a cascade process involving carbene
insertion, amino-directed ring-opening, and acetic acid elimi-
nation reactions. It is demonstrated for the first time that
acetate substituted cyclopropenes can be employed as a unique
C4 unit of 1,3-diene precursors. This novel strategy is accom-
plished under very mild reaction conditions, including low
catalyst-loading and ambient reaction temperature, which
further enable step-economy and environmental benefit.
6 (a) F. Miege, C. Meyer and J. Cossy, Org. Lett., 2010, 12, 4144–4147;
(b) F. Miege, C. Meyer and J. Cossy, Angew. Chem., Int. Ed., 2011, 50,
5932–5937; (c) F. Miege, C. Meyer and J. Cossy, Chem. – Eur. J., 2012,
´
´
´
18, 7810–7822; (d) M. J. Gonzalez, J. Gonzalez, L. A. Lopez and
R. Vicente, Angew. Chem., Int. Ed., 2015, 54, 12139–12143.
7 (a) M. F. Semmelhack, S. Ho, M. Steigerwald and M. C. Lee, J. Am.
Chem. Soc., 1987, 109, 4397–4399; (b) C. Li, Y. Zeng, H. Zhang,
J. Feng, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2010, 49,
6413–6417; (c) X.-B. Wang, Z.-J. Zheng, J.-L. Xie, X.-W. Gu, Q.-C. Wu,
G.-W. Yin, F. Ye, Z. Xu and L.-W. Xu, Angew. Chem., Int. Ed., 2020, 59,
790–797; (d) H. Zheng and M. P. Doyle, Angew. Chem., Int. Ed., 2019,
58, 12502–12506.
8 (a) J. M. Fox and N. Yan, Curr. Org. Chem., 2005, 9, 719–732;
(b) A. Masarwa, A. Stanger and I. Marek, Angew. Chem., Int. Ed.,
2007, 46, 8039–8042; (c) Y. Zhou, B. G. Trewyn, R. J. Angelici and
L. K. Woo, J. Am. Chem. Soc., 2009, 131, 11734–11743; (d) R. Vicente,
´
´
´
J. Gonzalez, L. Riesgo, J. Gonzalez and L. A. Lopez, Angew. Chem., Int.
Ed., 2012, 51, 8063–8067; (e) H. Zhang, B. Wang, K. Wang, G. Xie,
C. Li, Y. Zhang and J. Wang, Chem. Commun., 2014, 50, 8050–8052;
( f ) B. Wang, H. Yi, H. Zhang, T. Sun, Y. Zhang and J. Wang, J. Org.
Chem., 2018, 83, 1026–1032.
9 (a) M. G. Steinmetz, Y.-P. Yen and G. K. Poch, J. Chem. Soc., Chem.
Commun., 1983, 24, 1504–1505; (b) J.-Q. Huang and C.-Y. Ho, Angew.
Chem., Int. Ed., 2019, 58, 5702–5706.
10 (a) J.-P. Wan and Y. Gao, Chem. Rec., 2016, 16, 1164–1177;
(b) J. Huang and F. Yu, Synthesis, 2021, 587–610.
11 Representative works of enaminones: (a) F. Wang, W. Sun, Y. Wang,
Y. Jiang and T.-P. Loh, Org. Lett., 2018, 20, 1256–1260; (b) J. Chen,
P. Guo, J. Zhang, J. Rong, W. Sun, Y. Jiang and T.-P. Loh, Angew.
Chem., Int. Ed., 2019, 58, 12674–12679; (c) G. Liang, J. Rong, W. Sun,
G. Chen, Y. Jiang and T.-P. Loh, Org. Lett., 2018, 20, 7326–7331;
(d) M. Ni, J. Zhang, X. Liang, Y. Jiang and T.-P. Loh, Chem. Commun.,
2017, 53, 12286–12289; (e) Y. Jiang, G. Liang, C. Zhang and T.-P. Loh,
Eur, J. Org. Chem., 2016, 20, 3326–3330; ( f ) X. Liang, P. Guo,
W. Yang, M. Li, C. Jiang, W. Sun, T.-P. Loh and Y. Jiang, Chem.
Commun., 2020, 56, 2043–2046; (g) S. Zhou, J. Wang, L. Wang, C. Song,
K. Chen and J. Zhu, Angew. Chem., Int. Ed., 2016, 55, 9384–9388;
(h) E. Lourdusamy, L. Yao and C.-M. Park, Angew. Chem., Int. Ed., 2010,
49, 7963–7967; (i) L. Gan, Q. Yu, Y. Liu and J.-P. Wan, J. Org. Chem.,
2021, 86, 1231–1237; ( j) K. K. Toh, A. Biswas, Y.-F. Wang, Y. Y. Tan and
S. Chiba, J. Am. Chem. Soc., 2014, 136, 6011–6020.
Conflicts of interest
The authors declare no competing financial interest.
Notes and references
12 (a) D. Liu, H.-X. Ma, P. Fang and T.-S. Mei, Angew. Chem., Int. Ed.,
2019, 58, 5033–5037; (b) F. Bellina and R. Rossi, Chem. Rev., 2010,
110, 1082–1146.
13 (a) A. Archambeau, F. Miege, C. Meyer and J. Cossy, Angew. Chem., Int.
Ed., 2012, 51, 11540–11544; (b) H. Zhang, B. Wang, H. Yi, Y. Zhang and
J. Wang, Org. Lett., 2015, 17, 3322–3325; (c) Y. Lou, T. P. Remarchuk
and E. J. Corey, J. Am. Chem. Soc., 2005, 127, 14223–14230.
14 (a) C. Li, Y. Zeng and J. Wang, Tetrahedron, 2009, 50, 2956–2959;
(b) M. Simaan, P.-O. Delaye, M. Shi and I. Marek, Angew. Chem., Int.
Ed., 2015, 54, 12345–12348.
15 H. Suzuki, S. Yoshioka, A. Igesaka, H. Nishioka and Y. Takeuchi,
Tetrahedron, 2013, 69, 6399–6403.
16 (a) Y. Jiang and C.-M. Park, Chem. Sci., 2014, 5, 2347–2351;
(b) Y. Jiang, C.-M. Park and T.-P. Loh, Org. Lett., 2014, 16, 3432–3435.
1 (a) G. Mehta and H. S. P. Rao, The Chemistry of Dienes and Polyenes;
Z. Rappoport, Wiley, New York, 1997; (b) V. H. Rawal and
S. A. Kozmin, 1,3-Dienes. Science of Synthesis, Georg Thieme Verlag
KG, Stuttgart, 2009; (c) J. H. Delcamp, P. E. Gormisky and
M. C. White, J. Am. Chem. Soc., 2013, 135, 8460–8463;
(d) A. M. Harned and K. A. Volp, Nat. Prod. Rep., 2011, 28,
1790–1810; (e) H. Zorn, S. Langhoff, M. Scheibner, M. Nimtz and
R. G. Berger, Biol. Chem., 2003, 384, 1049–1056.
2 (a) S. T. Diver and A. J. Giessert, Chem. Rev., 2004, 104, 1317–1382;
(b) M. D. Paolis, I. Chataigner and J. Maddaluno, Top. Curr. Chem.,
2012, 327, 87–146; (c) X. Shang and Z.-Q. Liu, Chem. Soc. Rev., 2013,
42, 3253–3260; (d) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi and
A. Lei, Chem. Rev., 2015, 115, 12138–12204.
3 (a) V. T. Nguyen, H. T. Dang, H. H. Pham, V. D. Nguyen, C. Flores-
Hansen, H. D. Arman and O. V. Larionov, J. Am. Chem. Soc., 2018, 17 C. Zhu, R. Zhu, H. Zeng, F. Chen, C. Liu, W. Wu and H. Jiang, Angew.
140, 8434–8438; (b) H. T. Dang, V. D. Nguyen, G. C. Haug,
Chem., Int. Ed., 2017, 56, 13324–13328.
N. T. C. Vuong, H. D. Arman and O. V. Larionov, ACS Catal., 2021, 18 T.-L. Shie, C.-H. Lin, S.-L. Lin and D.-Y. Yang, Eur. J. Org. Chem.,
11, 1042–1052.
2007, 4831–4836.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 5710–5713 | 5713