results. Interestingly, Yuan and Liu recently reported chiral
molecular assemblies from achiral amphiphilic imidazole-based
ligand 2-(heptadecyl) naphtha[2,3]imidazole and AgNO3, in
which the chiral symmetry breaking occurred for the first time
in the monolayer at the air–water interface and in LB films
though interfacial coordination.5b As far as we know, we herein
present the first example describing chiral symmetry breaking in
the gel state.11–13
J.-H. Lee and M. Lee, Angew. Chem., Int. Ed., 2005, 44, 5810;
(g) H.-J. Kim, W.-C. Zin and M. Lee, J. Am. Chem. Soc., 2004,
126, 7009; (h) K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto and
N. Kimizuka, J. Am. Chem. Soc., 2004, 126, 2016; (i) O. Roubeau,
A. Colin, V. Schmitt and R. Clerac, Angew. Chem., Int. Ed., 2004,
´
43, 3283; (j) B. Xing, M.-F. Choi and B. Xu, Chem.–Eur. J., 2002,
8, 5028; (k) B. Xing, M.-F. Choi and B. Xu, Chem. Commun., 2002,
362.
4 M. Albrecht, Angew. Chem., Int. Ed., 2005, 44, 6448.
5 Chiral symmetry breaking in coordination polymers, see:
(a) S.-T. Wu, Y.-R. Wu, Q.-Q. Kang, H. Zhang, L.-S. Long,
Z. Zheng, R.-B. Huang and L.-S. Zheng, Angew. Chem., Int. Ed.,
2007, 46, 8475; (b) J. Yuan and M. Liu, J. Am. Chem. Soc., 2003,
125, 5051; (c) T. Ezuhara, K. Endo and Y. Aoyama, J. Am. Chem.
Soc., 1999, 121, 3279.
6 Selected examples, see: (a) W. Wang, P. Xi, X. Su, J. Lan, Z. Mao,
J. You and R. Xie, Cryst. Growth Des., 2007, 7, 741; (b) H. Wu,
W. Zhou and T. Yildirim, J. Am. Chem. Soc., 2007, 129, 5314;
(c) R.-Q. Zou, H. Sakurai and Q. Xu, Angew. Chem. Int. Ed., 2006,
45, 2542; (d) W.-G. Lu, C.-Y. Su, T.-B. Lu, L. Jiang and
J.-M. Chen, J. Am. Chem. Soc., 2006, 128, 34; (e) X.-C. Huang,
J.-P. Zhang and X.-M. Chen, J. Am. Chem. Soc., 2004, 126, 13218;
(f) M. A. Alam, M. Nethaji and M. Ray, Angew. Chem., Int. Ed.,
2003, 42, 1940.
We rationalize that the helical architectures are generated
from strong directional interactions derived from the complex-
ation between the rigid bent bridging ligands and Ag(I) that
adopts a linear coordination geometry. In the formation of the
helical polymer, the occurrence of statistical fluctuations in the
initial stage of metal–ligand coordination could lead to an
accidental excess of one helical direction.15 Once a certain helical
sense excess exists, the new aggregates would follow to form a
helical secondary structure with the same direction by chiral
autocatalysis, while the competitive generation of the opposite
helical sense is suppressed, thus leading to chiral amplification
and eventual macroscopic chirality.
7 (a) L. Dobrzan
´
ska, G. O. Lloyd, H. G. Raubenheimer and
ska,
L. J. Barbour, J. Am. Chem. Soc., 2006, 128, 698; (b) L. Dobrzan
´
To further shed light on the possible formation mechanism
of the helical tubular polymers, theoretical calculations have
been carried out on the basis of the first principle density
functional theory (DFT) (see ESIw for details).16 The opti-
mized result shows that the diameter of the helical tubule is ca.
9.1 nm and the helical pitch is ca. 7.1 nm, which is approxi-
mately in agreement with the experimental results from the
TEM and AFM studies (Fig. S10w).
G. O. Lloyd, H. G. Raubenheimer and L. J. Barbour, J. Am. Chem.
Soc., 2005, 127, 13134.
8 (a) A. Ajayaghosh, R. Varghese, S. Mahesh and V. K. Praveen,
Angew. Chem. Int. Ed., 2006, 45, 7729; (b) P. Samorı, V. Francke,
´
T. Mangel, K. Mullen and J. P. Rabe, Opt. Mater., 1998, 9, 390.
¨
9 In all CD measurements, the birefringence contribution was
avoided by carefully placing the sandwich ensemble perpendicular
to the light path. We also checked that the CD spectra did not
change when they were recorded rotating the ensemble in steps of
101 around the light axis. For detailed measurement methods, see
In summary, we have demonstrated that a simple achiral
molecule could induce a helical nonracemic nanotubular
structure when linked by a linear metal connecting point, which
forms an entangled fibrillar network thereby immobilizing a
wide range of solvents. In addition, the gels present another
appealing feature in their extremely simple preparation at room
temperature. Thus, the gel could be fabricated into various
geometric morphologies in accordance with the vessel in which
it was assembled.17 We foresee that these findings will open a
new avenue for the design of chiral functional soft materials
from structurally simple achiral building blocks.
C. Spitz, S. Dahne, A. Ouart and H. W. Abraham, J. Phys. Chem.
¨
B, 2000, 104, 8664.
10 (a) J. H. K. Ky Hirschberg, L. Brunsveld, A. Ramzi, J. A. J.
M. Vekemans, R. P. Sijbesma and E. W. Meijer, Nature, 2000, 407,
167; (b) K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata,
T. Komori, F. Olrseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
1994, 116, 6664.
11 Chiral symmetry breaking has been mainly reported in the crystal-
line state. Selected examples, see: (a) D. K. Kondepudi,
R. J. Kaufman and N. Singh, Science, 1990, 250, 975;
(b) R. E. Pincock, R. R. Perkins, A. S. Ma and K. R. Wilson,
Science, 1971, 174, 1018. Also see refs. 5a and 5c.
12 Selected examples of chiral symmetry breaking in solution, see:
(a) J. M. Ribo, J. Crusats, F. Sagues, J. Claret and R. Rubires,
´ ´
This work was supported by grants from the National
Natural Science Foundation of China (20772086, 20472057).
We thank the Centre of Testing and Analysis, Sichuan
University for SEM, TEM, AFM and CD measurements.
Science, 2001, 292, 2063; (b) U. De Rossi, S. Dahne, S. C.
¨
J. Meskers and H. P. J. M. Dekkers, Angew. Chem., Int. Ed. Engl.,
1996, 35, 760.
13 Selected examples of chiral symmetry breaking in liquid crystals,
see: (a) D. K. Schwartz, R. Viswanathan and J. A. N. Zasadzinski,
Phys. Rev. Lett., 1993, 70, 1267; (b) X. Qiu, J. Ruiz-Garcia,
K. J. Stine, C. M. Knobler and J. V. Selinger, Phys. Rev. Lett.,
1991, 67, 703.
Notes and references
1 F. Fages, Angew. Chem., Int. Ed., 2006, 45, 1680.
14 (a) S. Tanaka, M. Shirakawa, K. Kaneko, M. Takeuchi and
S. Shinkai, Langmuir, 2005, 21, 2163; (b) T. Ishi-i, R. Iguchi,
E. Snip, M. Ikeda and S. Shinkai, Langmuir, 2001, 17, 5825.
15 For relevant descriptions of statistical fluctuation in symmetry
breaking, see ref. 5a, 13 and 14.
16 G. Parr and W. Yang, Density functional theory of atoms and
molecules, Oxford University Press, New York, 1989.
17 In many cases, molecular gelations need a heating–dissolution
process. Such a process is a disadvantage for many industrial
applications of gelators, see M. Suzuki, Y. Nakajima,
M. Yumoto, M. Kimura, H. Shirai and K. Hanabusa, Langmuir,
2003, 19, 8622.
2 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts
and Perspectives, VCH, Weinheim, 1995; (b) S. Kitagawa,
R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334;
(c) P. J. Steel, Acc. Chem. Res., 2005, 38, 243.
3 (a) W. L. Leong, A. Y.-Y. Tam, S. K. Batabyal, L. W. Koh,
S. Kasapis, V. W.-W. Yam and J. J. Vittal, Chem. Commun., 2008,
3628; (b) J. M. J. Paulusse, D. J. M. van Beek and R. P. Sijbesma,
J. Am. Chem. Soc., 2007, 129, 2392; (c) J. K.-H. Hui, Z. Yu and
M. J. MacLachlan, Angew. Chem., Int. Ed., 2007, 46, 7980;
(d) W. Weng, J. B. Beck, A. M. Jamieson and S. J. Rowan,
J. Am. Chem. Soc., 2006, 128, 11663; (e) J. B. Beck and
S. J. Rowan, J. Am. Chem. Soc., 2003, 125, 13922; (f) H.-J. Kim,
ꢀc
This journal is The Royal Society of Chemistry 2008
6172 | Chem. Commun., 2008, 6170–6172