B. Jose et al. / Bioorg. Med. Chem. 12 (2004) 1351–1356
1355
HPLC. Pd-C was filtered off and methanol was removed
References and notes
to give cyclo(-Ser(tBu)-Asp(OtBu)-Asu(OH)-Thr(tBu)-
Ile-Gly-) (100 mg, 0.123 mmol, 98%). HPLC: 8.6 min
(chromolith, 10–100% CH3CN gradient containing
0.1%TFA over 15 min). The cyclo(-Ser(tBu)-Asp(OtBu)-
Asu(OH)-Thr(tBu)-Ile-Gly-) (100 mg, 0.123 mmol) was
dissolved in DMF (2mL). Hydroxylamine hydrochlo-
ride (43 mg, 0.62mmol), HOBt.H 2O (95 mg, 0.62
mmol) BOP (274 mg, 0.62 mmol) and Et3N (0.18 mL,
1.24 mmol) were added to the solution at 0 ꢂC. The
reaction mixture was stirred for 3 h and monitored by
HPLC. DMF was removed in vacuo and the residue
was treated with TFA (2mL) at 0 ꢂC for 3 h. TFA was
evaporated in vacuo at 0 ꢂC and the residue was applied
to a column of Sephadex LH-20 with DMF. The frac-
tions containing the desired cyclic hexapeptide hydro-
xamic acid were analyzed by HPLC and collected.
DMF was removed and the residue was lyophilized
from water to give cyclo(-Ser-Asp-Asu(NHOH)-Thr-Ile-
Gly-) (81 mg, 0.123 mmol, 100%). The product was
further purified by HPLC. HPLC: 2.8 min (chromolith,
10–100% CH3CN gradient containing 0.1% TFA over
15 min). FABMS gave peaks of (M+H)+ and
(M+Na)+ at m/z 660 and 682respectively. HR-
FABMS (M+H)+ 660.3207 for C27H46O12N7 (calcd
660.3204).
1. Grozinger, G. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 3.
2. Kouzarides, T. Curr. Opin. Genet. Dev. 1999, 9, 40.
3. Kouzarides, T. EMBO J. 2000, 19, 1176.
4. Hassig, C. A.; Schreiber, S. L. Curr. Opin. Chem. Biol.
1997, 1, 300.
5. Khochbin, S.; Verdel, A.; Lemercier, C.; Seigneurin-
Berny, D. Curr. Opin. Genet. Dev. 2001, 11, 162.
6. Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. J. Biol.
Chem. 1990, 265, 17174.
7. Kijima, M.; Yoshida, M.; Suguta, K.; Horinouchi, S.;
Beppu, T. J. Biol. Chem. 1993, 268, 22429.
8. Hirota, A.; Suzuki, A.; Aizawa, K.; Tamura, S. Biomed.
Mass. Specrom. 1974, 1, 15.
9. Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.;
Dulski, P. M.; Crumley, T. M.; Allocco, J. J.; Cannova,
C.; Meinke, P. T.; Colletti, S. L.; Bednarek, M. A.; Singh,
S. B.; Goetz, M. A.; Dombrowski, A. W.; Polishook,
J. D.; Schmatz, D. M. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 13143.
10. Meinke, P. T.; Liberator, P. Curr. Med. Chem. 2001, 8,
211.
11. Han, J. W.; Ahn, S. H.; Park, S. H.; Wang, S. Y.; Bae,
G. U.; Seo, D. W.; Known, H. K.; Hong, S.; Lee, Y. W.;
Lee, H. W. Cancer Res. 2000, 60, 6068.
12. Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura,
M.; Goto, T.; Okuhara, M. J. Antibiot. 1994, 47, 301.
13. Ueda, H.; Manda, T.; Matsumoto, S.; Mukumoto, S.;
Nishigaki, F.; Kawamura, I.; Shimomura, K. J. Antibiot.
1994, 47, 315.
3.4. NMR spectroscopy and structure calculation
14. Furumai, R.; Matsuyama, A.; Kobashi, M.; Lee, K.-H.;
Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.;
Nishino, N.; Yoshida, M.; Horinouchi, S. Cancer Res.
2002, 62, 4916.
15. Gore, S. D.; Carducci, M. A. Exp. Opin. Invest. Drugs
2000, 9, 2923.
16. Phiel, C. J.; Zhang, F.; Huang, E. Y.; Guenther, M. G.;
Lazar, M. A.; Klein, P. S. J. Biol. Chem. 2001, 76, 36734.
17. Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Bre-
slow, R.; Rifkind, R. A.; Marks, P. A. Proc. Natl. Acad.
Sci. U.S.A. 1998, 95, 3003.
NMR spectra were recorded on a JEOL spectrometer
operating at 500 MHz in DMSO-d6 using TMS as
internal standard. Spectra were recorded at variable
temperatures such as, 298, 303, 313, 323, and 333 K
respectively. Assignments of proton resonances were
confirmed, when possible, by COSY, HOHAHA and
NOESY experiments. Mixing times for NOESY experi-
ments were 200 and 400 ms. Number of scans varied
between 32and 64, and the number of points in t
1
2
dimension was 512. H resonances were assigned using
a
18. Jung, M.; Brosch, G.; Kolle, D.; Scherf, H.; Gerhauser,
¨
C.; Loidi, P. J. Med. Chem. 1999, 42, 4669.
¨
3
standard procedures. JNHꢀC
coupling constants for
H
non-overlapping signals were determined from 1D
spectra with high digital resolution.
19. Remiszewski, S. W.; Sambucetti, L. C.; Atadja, P.; Bair,
K. W.; Cornell, W. D.; Green, M. A.; Howell, K. L.;
Jung, M.; Known, P.; Trogani, N.; Walker, H. J. Med.
Chem. 2002, 45, 753.
20. Woo, S. H.; Frechette, S.; Khalil, E. A.; Bouchain, G.;
Vaisburg, A.; Bernstein, N.; Moradei, O.; Leit, S.; Allan,
M.; Fournel, M.; Trachy-Bourget, M. C.; Li, Z.; Bestman,
J. M.; Delorme, D. J. Med. Chem. 2002, 45, 2877.
21. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito,
A.; Mariko, Y.; Nakanishi, O. J. Med. Chem. 1999, 42, 3001.
22. Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsu-
chiya, K.; Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4592.
23. Komatsu, Y.; Tomizaki, K.; Tsukamoto, M.; Kato, T.;
Nishino, N.; Sato, S.; Yamori, T.; Tsuruo, T.; Furumai,
R.; Yoshida, M.; Horinouchi, S.; Hayashi, H. Cancer Res.
2001, 61, 4459.
24. Furumai, R.; Komatsu, Y.; Nishino, N.; Khochbin, S.;
Yoshida, M.; Horinouchi, S. Proc. Natl. Acad. Sci. U.S.A.
2000, 98, 87.
3.5. HDAC inhibitory activity assay
The preparation and assay of the enzymes were per-
formed as described in ref 14.
3.6. Molecular modeling studies
All calculations were performed on a Silicon Graphics
computer. The distance geometry program was used to
generate structures consistent with the distance con-
straints derived from the NOEs. Temperature coefficient
of NH protons indicating hydrogen bonds and f angles
a
calculated from JNHꢀH were used to filter out struc-
tures that did not meet the experimental data. An error
of ꢃ30ꢂ was tolerated for the f angles calculated from
JaNH-H at this stage of refinement. Energy minimization
and molecular dynamics calculation were carried out
using the CHARMm program of Insight II using
CHARMm forcefield. a-Tubulin structure was used
from Protein Data Bank.29
25. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.;
Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P.
Nature 1999, 401, 188.
26. Grozinger, C. M.; Hassig, C. A.; Schreiber, S. L. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 4868.