X. Li et al. / Tetrahedron Letters 47 (2006) 19–22
21
group is reduced on support, the resulting amino group
could be readily derivatized into other useful functional-
ities including carboxamides, sulfonamides, and ureas.
O
b
a
OH
B
OH
NH
R1
N
CHO
R1
4
6
5
In summary, we developed a new method for the synthe-
sis of functionalized biaryl a-ketophosphonic acids
using sodium bromobenzoyl phosphonates as precur-
sors via aqueous Suzuki coupling on solid support. To
the best of our knowledge, these are the first reported
examples of palladium-catalyzed syntheses of com-
pounds incorporating a-ketophosphonic acids. This di-
rect approach provides rapid access to a wide range of
diverse biaryl a-ketophosphonic acids, which constitute
an interesting class of inhibitors of protein tyrosine
phosphatases.5
O
c
N
O
R1
P(OM)2
O
O
7 (M = K, Na)
O
d
R1HN
O
P(OH)2
8
Scheme 2. Reagents and conditions: (a) (i) R1NH2, TMOF/DMF
(1:1), 30 min; (ii) HOAc, MeOH, NaBH3CN, overnight; (b) HO2C–
C6H4–B(OH)2, PyBOP, DIEA, DMF, overnight; (c) 3a–c, Pd(OAc)2,
10% K2CO3 and CH3CN (2:1 v/v), microwave, 10 min; (d)
CF3COOH/CH2Cl2 (1:1), 20 min.
Acknowledgments
We thank Limin He for HPLC and LC/MS analysis.
We also thank Professor Ron Kluger at the University
of Toronto for helpful discussions.
Table 2. Solid-phase synthesis of biaryl a-ketophosphonic acids 8
using 3a–c via aqueous Suzuki coupling reaction
References and notes
O
6'
5
1'
5' 4
4' 3
R1HN
O
6
1. Kluger, R.; Pike, D. C. J. Am. Chem. Soc. 1977, 99, 4504.
2. OÕBrien, T. A.; Kluger, R.; Pike, D. C.; Gennis, R. B.
Biochim. Biophys. Acta 1980, 613, 10.
3. Tao, M.; Bihovsky, R.; Wells, G. J.; Mallamo, J. P. J.
Med. Chem. 1998, 41, 3912.
1
P(OH)2
2'
3'
2
O
Compds R1
3a–c Attachment points Yieldc (%)
8aa
8ba
8ca
8da
8ea
8fa
H
H
H
H
H
H
a
b
c
a
b
c
40–4
40–3
40–2
30–4
30–3
30–2
32
39
49
41
28
53
4. Van Gelder, J. M.; Breuer, E.; Ornoy, A.; Schlossman, A.;
Patlas, N.; Golomb, G. Bone 1995, 16, 511.
5. Widlanski, T. S.; Myers, J. K.; Stec, B.; Holtz, K. M.;
Kantrowitz, E. R. Chem. Biol. 1997, 4, 489.
6. (a) Sekine, M.; Satoh, M.; Yamagata, H.; Hata, T. J. Org.
Chem. 1980, 45, 4162; (b) Kume, A.; Fujii, M.; Sekine, M.;
Hata, T. J. Org. Chem. 1984, 49, 2139.
7. (a) Kluger, R.; Chin, J. J. Am. Chem. Soc. 1978, 100, 7382;
(b) Kluger, R.; Pike, D.; Chin, J. Can. J. Chem. 1978, 56,
1792.
8gb
8hb
8ib
b
b
b
40–3
40–3
40–3
22
31
34
8. (a) Breuer, E.; Safadi, M.; Chorev, M.; Gibson, D. J. Org.
Chem. 1990, 55, 6147; (b) Karaman, R.; Goldblum, A.;
Breuer, E.; Lead, H. J. Chem. Soc., Perkin Trans. 1 1989,
765.
8jb
b
b
40–3
40–3
31
20
9. (a) Narayanan, K. S.; Berlin, K. D. J. Am. Chem. Soc.
1979, 101, 109; (b) Berlin, K. D.; Taylor, H. A. J. Am.
Chem. Soc. 1964, 86, 3862; (c) Solas, D.; Hale, R. L.;
Patel, D. V. J. Org. Chem. 1996, 61, 1537.
10. Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981,
81, 415.
11. (a) Burke, T. R., Jr.; Smyth, M. S.; Nomizu, M.; Otaka,
A.; Roller, P. P. J. Org. Chem. 1993, 58, 1336; (b)
Kaboudin, B. Tetrahedron Lett. 2000, 41, 3169; (c) Liao,
Y.; Shabany, H.; Spilling, C. D. Tetrahedron Lett. 1998,
39, 8389.
O
N
8kb
8lb
b
40–3
20
N
a ArgoPore Rink-NH2 resin 5 was used with a loading of 0.60 mmol/g.
b ArgoPore BAL resin 4 was used with a loading 0.62 mmol/g.
c Isolated yields after preparative HPLC.
12. (a) Li, X.; Bhandari, A.; Holmes, C. P.; Szardenings, A. K.
Bioorg. Med. Chem. Lett. 2004, 14, 4301; (b) Holmes, C.
P.; Li, X.; Pan, Y.; Xu, C.; Bhandari, A.; Moody, C.;
Miguel, J.; Ferla, S. W.; Defrancisco, M. N.; Frederick, B.
T.; Zhou, S.; Macher, N.; Jang, L.; Irvine, J. D.; Grove, J.
R. Bioorg. Med. Chem. Lett. 2005, 15, 4336.
the amide portion of scaffold 8b. Using the same proce-
dure, substituents could be incorporated in scaffolds 8a
and 8c–f as well.
13. For recent reviews on PTP inhibitors, see (a) Zhang, Z.-Y.
Annu. Rev. Pharmacol. Toxicol. 2002, 42, 209; (b) John-
son, T. O.; Ermolieff, J.; Jirousek, M. R. Nat. Rev. Drug
Disc. 2002, 1, 696; (c) Taylor, S. D. Curr. Top. Med. Chem.
2003, 3, 759; (d) Liu, G. Curr. Med. Chem. 2003, 10, 1407;
It is also conceivable to use this solid-phase approach to
incorporate additional sets of diversity by using boronic
acids such as (4-carboxy-2-nitrophenyl)boronic acid and
(3-carboxy-5-nitrophenyl)boronic acid. After the nitro