Page 5 of 7
Journal of the American Chemical Society
Soc. 2010, 132, 16377-16379. (m) Zhang, H. H.; Dong, J.; Hu, Q. S.
(18)
Hofer, M.; Genoux, A.; Kumar, R.; Nevado, C. Gold-
tBu3P-Coordinated 2-Phenylaniline-Based Palladacycle Complex as
Precatalyst for Pd-Catalyzed Coupling Reactions of Aryl Halides with
Polyfluoroarenes via C-H Activation Strategy. Eur. J. Org. Chem. 2014,
1327-1332. For Ni catalysis, see: (n) Wang, J. Y.; Meng, G.; Xie, K.; Li,
L. T.; Sun, H. M.; Huang, Z. Y. Mild and Efficient Ni-Catalyzed Biaryl
Synthesis with Polyfluoroaryl Magnesium Species: Verification of the
Arrest State, Uncovering the Hidden Competitive Second
Catalyzed Direct Oxidative Arylation with Boron Coupling Partners.
Angew. Chem. Int. Ed. 2016, 56, 1021-1025.
1
2
3
4
5
6
7
8
(19)
(a) Lu, P.; Boorman, T. C.; Slawin, A. M.; Larrosa, I. Gold(I)-
Mediated C-H Activation of Arenes. J. Am. Chem. Soc. 2010, 132, 5580-
5581. (b) Cambeiro, X. C.; Boorman, T. C.; Lu, P.; Larrosa, I. Redox-
Controlled Selectivity of C-H Activation in the Oxidative Cross-
Coupling of Arenes. Angew. Chem. Int. Ed. 2013, 52, 1781-1784. (c)
Cambeiro, X. C.; Ahlsten, N.; Larrosa, I. Au-Catalyzed Cross-Coupling
of Arenes Via Double C-H Activation. J. Am. Chem. Soc. 2015, 137,
15636-15639.
Transmetalation
and
Ligand-Accelerated
Highly
Selective
Monoarylation. ACS Catal. 2017, 7, 7421-7430. For Ru catalysis: (o)
Simonetti, M.; Perry, G. J.; Cambeiro, X. C.; Julia-Hernandez, F.;
Arokianathar, J. N.; Larrosa, I. Ru-Catalyzed C-H Arylation of
Fluoroarenes with Aryl Halides. J. Am. Chem. Soc. 2016, 138, 3596-
3606. For photoredox-catalyzed: (p) Meyer, A. U.; Slanina, T.; Yao, C.-
J.; König, B. Metal-Free Perfluoroarylation by Visible Light Photoredox
Catalysis. ACS Catal. 2015, 6, 369-375.
(20)
Kang, L. J.; Xing, L.; Luscombe, C. K. Exploration and
9
Development of Gold- and Silver-Catalyzed Cross Dehydrogenative
Coupling toward Donor–Acceptor π-Conjugated Polymer Synthesis.
Polymer Chemistry 2019, 10, 486-493.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21)
Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Gold-Catalyzed
(9)
Few chemoselective couplings with ArFnH in the presence of
Oxidative Coupling of Arylsilanes and Arenes: Origin of Selectivity and
Improved Precatalyst. J. Am. Chem. Soc. 2014, 136, 254-264.
competing C-halogen bonds have been reported in scope studies, see: (a)
Rene, O.; Fagnou, K. Room-Temperature Direct Arylation of
Polyfluorinated Arenes under Biphasic Conditions. Org. Lett. 2010, 12,
2116-2119. (b) Chen, F.; Min, Q. Q.; Zhang, X. Pd-Catalyzed Direct
Arylation of Polyfluoroarenes on Water under Mild Conditions Using
PPh3 Ligand. J. Org. Chem. 2012, 77, 2992-2998. (c) Fan, H.; Shang, Y.;
Su, W. Palladium-Catalyzed Direct Arylation of Polyfluoroarenes with
Organosilicon Reagents. Eur. J. Org. Chem. 2014, 2014, 3323-3327. (d)
Xu, S.; Wu, G.; Ye, F.; Wang, X.; Li, H.; Zhao, X.; Zhang, Y.; Wang, J.
Copper(I)-Catalyzed Alkylation of Polyfluoroarenes through Direct C-H
Bond Functionalization. Angew. Chem. Int. Ed. 2015, 54, 4669-4672.
(22)
For early examples of catalytic methods involving C-H
activation at Au(III), see: (a) Brand, J. P.; Charpentier, J.; Waser, J. Direct
Alkynylation of Indole and Pyrrole Heterocycles. Angew. Chem., Int. Ed.
2009, 48, 9346-9349. (b) De Haro, T.; Nevado, C. Gold-Catalyzed
Ethynylation of Arenes. J. Am. Chem. Soc. 2010, 132, 1512-1513. (c)
Brand, J. P.; Waser, J. Direct Alkynylation of Thiophenes: Cooperative
Activation of TIPS–EBX with Gold and Brønsted Acids. Angew. Chem.,
Int. Ed. 2010, 49, 7304-7307. C-H arylation with arylboronic acids: (d)
Wu, Q.; Du, C.; Huang, Y.; Liu, X.; Long, Z.; Song, F.; You, J.
Stoichiometric to Catalytic Reactivity of the Aryl Cycloaurated Species
with Arylboronic Acids: Insight into the Mechanism of Gold-Catalyzed
Oxidative C(sp2)–H Arylation. Chem. Sci. 2015, 6, 288-293.
(10) For a discussion, see: Kalvet, I.; Magnin, G.; Schoenebeck, F. Rapid
Room-Temperature, Chemoselective Csp2-Csp2 Coupling of
Poly(Pseudo)Halogenated Arenes Enabled by Palladium(I) Catalysis in
Air. Angew. Chem. Int. Ed. 2017, 56, 1581-1585.
(23)
Interestingly, when the corresponding FnAr silanes or
germanes are used instead of FnArBPin, no coupling is seen. See
Supporting Information for details.
(11)
For example, 2-iodo-4-bromo-toluene is unreactive in a state-
of-the-art Pd-catalyzed C-H functionalization and in Cu-catalyzed
protocol resulted in the formation of an unseparable product mixture (see
supporting information for details on our tests).
(24)
For an example of silver-free C-H activation of
polyfluoroarene, see: Gaillard, S.; Slawin, A. M.; Nolan, S. P. A N-
heterocyclic Carbenegold Hydroxide Complex: A Golden Synthon.
Chem. Commun. 2010, 46, 2742-2744.
(12)
Tepper, R.; Schubert, U. S. Halogen Bonding in Solution:
Anion Recognition, Templated Self‐Assembly, and Organocatalysis.
Angew. Chem. Int. Ed. 2018, 57, 6004.
(25)
The aryl germanes can be made by analogy to silanes, e.g. by
reaction of aryl Grignard reagents with R3GeCl. The cost of Et3GeCl is
35 $/gram.
(13)
For examples, see: (a) Hardegger, L. A.; Kuhn, B.; Spinnler,
B.; Anselm, L.; Ecabert, R.; Stihle, M.; Gsell, B.; Thoma, R.; Diez, J.;
Benz, J.; Plancher, J. M.; Hartmann, G.; Banner, D. W.; Haap, W.;
Diederich, F. Systematic Investigation of Halogen Bonding in Protein–
Ligand Interactions. Angew. Chem. Int. Ed. 2011, 50, 314-318. (b)
Wilcken, R.; Liu, X.; Zimmermann, M. O.; Rutherford, T. J.; Fersht, A.
R.; Joerger, A. C.; Boeckler, F. M. Halogen-Enriched Fragment Libraries
as Leads for Drug Rescue of Mutant p53. J. Am. Chem. Soc. 2012, 134,
6810-6818.
(26)
For detailed investigation of the mechanism, see: (a) Li, W.;
Yuan, D.; Wang, G.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Cooperative Au/Ag
Dual-Catalyzed Cross-Dehydrogenative Biaryl Coupling: Reaction
Development and Mechanistic Insight. J. Am. Chem. Soc. 2019, 141,
3187-3197. (b) Liu, J. R.; Duan, Y. Q.; Zhang, S. Q.; Zhu, L. J.; Jiang,
Y. Y.; Bi, S.; Hong, X. C–H Acidity and Arene Nucleophilicity as
Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation.
Org. Lett. 2019, 21, 2360-2364.
(14)
For early work in gold catalyzed coupling strategies tolerating
(27)
For discussion of silver mediated Umpolung strategies of
halide sites, see: (a) Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse,
M. K. A General Gold-Catalyzed Direct Oxidative Coupling of Non-
Activated Arenes. Chem. Commun. 2008, 386-388. (b) Kar, A.; Mangu,
N.; Kaiser, H. M.; Tse, M. K. Gold-Catalyzed Direct Oxidative Coupling
Reactions of Non-Activated Arenes. J. Organomet. Chem. 2009, 694,
524-537.
FnC6H in Pd-catalyzed cross couplings, see: (a) He, C.-Y.; Min, Q.-Q.;
Zhang, X. Palladium-Catalyzed Aerobic Dehydrogenative Cross-
Coupling of Polyfluoroarenes with Thiophenes: Facile Access to
Polyfluoroarene–Thiophene Structure. Organometallics 2011, 31, 1335-
1340. (b) Li, H.; Liu, J.; Sun, C. L.; Li, B. J.; Shi, Z. J. Palladium-
Catalyzed Cross-Coupling of Polyfluoroarenes with Simple Arenes. Org.
Lett. 2011, 13, 276-279 (c) Lee, S. Y.; Hartwig, J. F. Palladium-
Catalyzed, Site-Selective Direct Allylation of Aryl C–H Bonds by Silver-
Mediated C–H Activation: A Synthetic and Mechanistic Investigation. J.
Am. Chem. Soc. 2016, 138, 15278-15284. (d) M. D. Lotz, J. F.; Camasso,
N. M.; Canty, A. J.; Sanford, M. S. Role of Silver Salts in Palladium-
Catalyzed Arene and Heteroarene C–H Functionalization Reactions.
Organometallics 2016, 36, 165-171. (e) Whitaker, D.; Bures, J.; Larrosa,
I. Ag(I)-Catalyzed C–H Activation: The Role of the Ag(I) Salt in Pd/Ag-
Mediated C–H Arylation of Electron-Deficient Arenes. J. Am. Chem.
Soc. 2016, 138, 8384-8387.
(15)
For literature on gold-catalyzed activation of aryl halides, see:
(a) Livendahl, M.; Goehry, C.; Maseras, F.; Echavarren, A. M. Rationale
for the Sluggish Oxidative Addition of Aryl Halides to Au(I). Chem.
Commun. 2014, 50, 1533-1536. (b) Guenther, J.; MalletLadeira, S.;
Estevez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. Activation of Aryl
Halides at Gold(I): Practical Synthesis of (P,C) Cyclometalated Gold(III)
Complexes. J. Am. Chem. Soc. 2014, 136, 1778-1781. (c) Joost, M.;
Zeineddine, A.; Estevez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune,
A.; Bourissou, D. Facile Oxidative Addition of Aryl Iodides to Gold(I)
by Ligand Design: Bending Turns on Reactivity. J. Am. Chem. Soc. 2014,
136, 14654-14657.
(28)
We systematically ommitted (Ph3P)AuCl and Ag2O in
(16)
(a) Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Gold-
separate reactions and only observed productive coupling to the desired
product when all componens were present. With Pd2dba3 instead of
(Ph3P)AuCl, no product formation occured, however several
sideproducts were formed. This suggests that Pd nanoparticles can be
ruled out as the catalytically active species. Under Pd nanoparticle
conditions in conjunction with silver salts, aryl germanes can be
efficiently coupled with aryl iodides, see: Fricke, C.; Sherborne, G. J.;
Funes-Ardoiz, I.; Senol, E.; Guven, S.; Schoenebeck, F. Orthogonal
Nanoparticle Catalysis with Organogermanes. Angew. Chem. Int. Ed.
2019, 58, 17788-17795.
Catalyzed Direct Arylation. Science 2012, 337, 1644-1648. (b)
Cresswell, A. J.; Lloyd-Jones, G. C. Room-Temperature Gold-Catalysed
Arylation of Heteroarenes: Complementarity to Palladium Catalysis.
Chem. Eur. J. 2016, 22, 12641-12645. (c) Corrie, T. J.; Ball, L. T.;
Russell, C. A.; Lloyd-Jones, G. C. Au-Catalyzed Biaryl Coupling to
Generate 5- to 9-Membered Rings: Turnover-Limiting Reductive
Elimination Versus Pi-Complexation. J. Am. Chem. Soc. 2017, 139, 245-
254.
(17)
Fricke, C.; Dahiya, A.; Reid, W. B.; Schoenebeck, F. Gold-
Catalyzed C–H Functionalization with Aryl Germanes. ACS Catal. 2019,
9, 9231-9236.
(29)
The C-H fucntionalization only proceeds with (Ph3P)AuCl;
(tht)AuBr3 as gold pre-catalyst did not result in any product formation.
5
ACS Paragon Plus Environment