ACS Applied Materials & Interfaces
Research Article
(18) Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species
Generating Systems Meeting Challenges of Photodynamic Cancer
Therapy. Chem. Soc. Rev. 2016, 45, 6597−6626.
(19) Piao, W.; Hanaoka, K.; Fujisawa, T.; Takeuchi, S.; Komatsu, T.;
Ueno, T.; Terai, T.; Tahara, T.; Nagano, T.; Urano, Y. Development
of an Azo-Based Photosensitizer Activated under Mild Hypoxia for
Photodynamic Therapy. J. Am. Chem. Soc. 2017, 139, 13713−13719.
(20) Mohyeldin, A.; Garzon-Muvdi, T.; Quinones-Hinojosa, A.
Oxygen in Stem Cell Biology: a Critical Component of the Stem Cell
Niche. Cell Stem Cell 2010, 7, 150−161.
(21) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.;
Zhang, L.; Huang, W. Thermally Activated Delayed Fluorescence
Materials towards the Breakthrough of Organoelectronics. Adv. Mater.
2014, 26, 7931−7958.
(22) Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.;
Zhang, Y.; Lien, A.; Xu, J. An Organic Molecule with Asymmetric
Structure Exhibiting Aggregation-Induced Emission, Delayed Fluo-
rescence, and Mechanoluminescence. Angew. Chem., Int. Ed. 2015, 54,
874−878.
(23) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly Efficient Organic Light-Emitting Diodes from Delayed
Fluorescence. Nature 2012, 492, 234−238.
(24) Zhang, J.; Chen, W.; Chen, R.; Liu, X. K.; Xiong, Y.; Kershaw,
S. V.; Rogach, A. L.; Adachi, C.; Zhang, X.; Lee, C. S. Organic
Nanostructures of Thermally Activated Delayed Fluorescent Emitters
with Enhanced Intersystem Crossing as Novel Metal-Free Photo-
sensitizers. Chem. Commun. 2016, 52, 11744−11747.
(25) Xiong, X.; Zheng, L.; Yan, J.; Ye, F.; Qian, Y.; Song, F. A Turn-
on and Colorimetric Metal-Free Long Lifetime Fluorescent Probe and
its Application for Time-Resolved Luminescent Detection and
Bioimaging of Cysteine. RSC Adv. 2015, 5, 53660−53664.
(26) Liu, Z.; Song, F.; Song, B.; Jiao, L.; An, J.; Yuan, J.; Peng, X. A
FRET Chemosensor for Hypochlorite with Large Stokes Shifts and
Long-Lifetime Emissions. Sens. Actuators, B 2018, 262, 958−965.
(27) Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S.
M. Mitochondrial Nitroreductase Activity Enables Selective Imaging
and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138, 12009−
12012.
(28) Bae, J.; McNamara, L. E.; Nael, M. A.; Mahdi, F.; Doerksen, R.
J.; Bidwell, G. L.; Hammer, N. I.; Jo, S. Nitroreductase-Triggered
Activation of a Novel Caged Fluorescent Probe Obtained from
Methylene Blue. Chem. Commun. 2015, 51, 12787−12790.
(29) Zhang, J.; Liu, H. W.; Hu, X. X.; Li, J.; Liang, L. H.; Zhang, X.
B.; Tan, W. Efficient Two-Photon Fluorescent Probe for Nitro-
reductase Detection and Hypoxia Imaging in Tumor Cells and
Tissues. Anal. Chem. 2015, 87, 11832−11839.
(30) Li, Z.; Li, X.; Gao, X.; Zhang, Y.; Shi, W.; Ma, H.
Nitroreductase Detection and Hypoxic Tumor Cell Imaging by a
Designed Sensitive and Selective Fluorescent Probe, 7-[(5-nitrofuran-
2-yl)methoxy]-3H-phenoxazin-3-one. Anal. Chem. 2013, 85, 3926−
3932.
(31) Guo, T.; Cui, L.; Shen, J.; Zhu, W.; Xu, Y.; Qian, X. A Highly
Sensitive Long-Wavelength Fluorescence Probe for Nitroreductase
and Hypoxia: Selective Detection and Quantification. Chem. Commun.
2013, 49, 10820−10822.
(32) Fang, Y.; Shi, W.; Hu, Y.; Li, X.; Ma, H. A Dual-Function
Fluorescent Probe for Monitoring the Degrees of Hypoxia in Living
Cells via the Imaging of Nitroreductase and Adenosine Triphosphate.
Chem. Commun. 2018, 54, 5454−5457.
(33) Huang, B.; Chen, W.; Kuang, Y. Q.; Liu, W.; Liu, X. J.; Tang, L.
J.; Jiang, J. H. A Novel off-on Fluorescent Probe for Sensitive Imaging
of Mitochondria-Specific Nitroreductase Activity in Living Tumor
Cells. Org. Biomol. Chem. 2017, 15, 4383−4389.
(34) Li, Y.; Sun, Y.; Li, J.; Su, Q.; Yuan, W.; Dai, Y.; Han, C.; Wang,
Q.; Feng, W.; Li, F. Ultrasensitive Near-Infrared Fluorescence-
Enhanced Probe for in Vivo Nitroreductase Imaging. J. Am. Chem.
Soc. 2015, 137, 6407−6416.
(35) Li, X.; Gong, C.; Gurzadyan, G. G.; Gelin, M. F.; Liu, J.; Sun, L.
Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-
Universities of China (DUT16TD21), DUT startup grant
(G.G.), DUT basic research funding (DUT18GJ205), and
Science Program of Dalian City (2015J12JH207). This work
was also supported by the Supercomputing Center of Dalian
University of Technology.
REFERENCES
■
(1) Vineberg, J. G.; Wang, T.; Zuniga, E. S.; Ojima, I. Design,
Synthesis, and Biological Evaluation of Theranostic Vitamin-Linker-
Taxoid Conjugates. J. Med. Chem. 2015, 58, 2406−2416.
(2) Bhuniya, S.; Maiti, S.; Kim, E. J.; Lee, H.; Sessler, J. L.; Hong, K.
S.; Kim, J. S. An Activatable Theranostic for Targeted Cancer
Therapy and Imaging. Angew. Chem., Int. Ed. 2014, 53, 4469−4474.
(3) Lee, M. H.; Kim, J. Y.; Han, J. H.; Bhuniya, S.; Sessler, J. L.;
Kang, C.; Kim, J. S. Direct Fluorescence Monitoring of the Delivery
and Cellular Uptake of a Cancer-Targeted RGD Peptide-Appended
Naphthalimide Theragnostic Prodrug. J. Am. Chem. Soc. 2012, 134,
12668−12674.
(4) Santra, S.; Kaittanis, C.; Santiesteban, O. J.; Perez, J. M. Cell-
Specific, Activatable, and Theranostic Prodrug for Dual-Targeted
Cancer Imaging and Therapy. J. Am. Chem. Soc. 2011, 133, 16680−
16688.
(5) Alaoui, A. E.; Schmidt, F.; Amessou, M.; Sarr, M.; Decaudin, D.;
Florent, J. C.; Johannes, L. Shiga Toxin-Mediated Retrograde Delivery
of a Topoisomerase I inhibitor Prodrug. Angew. Chem., Int. Ed. 2007,
46, 6469−6472.
(6) Kularatne, S. A.; Venkatesh, C.; Santhapuram, H. K.; Wang, K.;
Vaitilingam, B.; Henne, W. A.; Low, P. S. Synthesis and Biological
Analysis of Prostate-Specific Membrane Antigen-Targeted Anticancer
Prodrugs. J. Med. Chem. 2010, 53, 7767−7777.
(7) Croissant, J. G.; Zink, J. I.; Raehm, L.; Durand, J. O. Two-
Photon-Excited Silica and Organosilica Nanoparticles for Spatiotem-
poral Cancer Treatment. Adv. Health. Mater. 2018, 7, No. 1701248.
(8) Sun, Z.; Zhang, L.; Wu, F.; Zhao, Y. Photosensitizers for Two-
Photon Excited Photodynamic Therapy. Adv. Funct. Mater. 2017, 27,
No. 1704079.
(9) Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable
Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110,
2839−2857.
(10) Ichikawa, Y.; Kamiya, M.; Obata, F.; Miura, M.; Terai, T.;
Komatsu, T.; Ueno, T.; Hanaoka, K.; Nagano, T.; Urano, Y. Selective
Ablation of Beta-Galactosidase-Expressing Cells with a Rationally
Designed Activatable Photosensitizer. Angew. Chem., Int. Ed. 2014, 53,
6772−6775.
(11) Lau, J. T. F.; Lo, P. C.; Jiang, X. J.; Wang, Q.; Ng, D. K. A Dual
Activatable Photosensitizer toward Targeted Photodynamic Therapy.
J. Med. Chem. 2014, 57, 4088−4097.
(12) Chiba, M.; Ichikawa, Y.; Kamiya, M.; Komatsu, T.; Ueno, T.;
Hanaoka, K.; Nagano, T.; Lange, N.; Urano, Y. An Activatable
Photosensitizer Targeted to Gamma-Glutamyltranspeptidase. Angew.
Chem., Int. Ed. 2017, 56, 10418−10422.
(13) Luby, B. M.; Walsh, C. D.; Zheng, G. Advanced Photosensitizer
Activation Strategies for Smarter Photodynamic Therapy Beacons.
Angew. Chem., Int. Ed. 2019, 58, 2558−2569.
(14) Thambi, T.; Park, J. H.; Lee, D. S. Hypoxia-Responsive
Nanocarriers for Cancer Imaging and Therapy: Recent Approaches
and Future Perspectives. Chem. Commun. 2016, 52, 8492−8500.
(15) Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J.
S. Macro-/Micro-Environment-Sensitive Chemosensing and Bio-
logical Imaging. Chem. Soc. Rev. 2014, 43, 4563−4601.
(16) Liu, J. N.; Bu, W.; Shi, J. Chemical Design and Synthesis of
Functionalized Probes for Imaging and Treating Tumor Hypoxia.
Chem. Rev. 2017, 117, 6160−6224.
(17) Li, M.; Xia, J.; Tian, R.; Wang, J.; Fan, J.; Du, J.; Long, S.; Song,
X.; Foley, J. W.; Peng, X. Near-Infrared Light-Initiated Molecular
Superoxide Radical Generator: Rejuvenating Photodynamic Therapy
against Hypoxic Tumors. J. Am. Chem. Soc. 2018, 140, 14851−14859.
15434
ACS Appl. Mater. Interfaces 2019, 11, 15426−15435