G. Fan, Y. Liu / Tetrahedron Letters 53 (2012) 5084–5087
5087
O
Ph
N
Ti(OiPr)4
c-C5H9MgCl
Ph
Ph
Ph
Ph
Ph
Ph
N
iPrOMgCl
N
Ph
H
(iPrO)2Ti
(iPrO)2Ti
coupling
ring
O
Ph
iPrOMgCl
2
opening
6
2a
, major isomer
Ph
Ph
N
ClMgN
Ph
Ph
ClMgN
Ph
Ph
Ph
O
Ti(OiPr)2
OiPr
Ph
O=Ti(OiPr)2
+
O
(iPrO)3Ti
iPrOMgCl
7
8
5a
Scheme 2. Possible reaction mechanism for the formation of cis-aziridines.
and 72% yields, respectively, with good diastereoselectivity
(Table 2, entries 1 and 2). The reaction with cinnamaldehyde also
afforded amino alcohol 3q as a major product, however, with
lower stereoselectivity (entry 3). Interestingly, the use of
benzaldehyde resulted in the formation of aziridine 5a as a major
product, along with 18% of amino alcohol 3r (entry 4). The stereo-
chemistry of the major isomer of 3r is anti with respect to two
phenyl groups by comparing the NMR spectra with that of a
known compound.11 However, the stereochemistry of aziridine
5a was found to be cis as confirmed by X-ray crystal analysis,12
indicating that the configuration of hydroxyl-bearing carbon
was inversed during the cyclization process. When electron-poor
aryl aldehydes such as p-chloro- or o-bromobenzaldehydes were
employed as coupling partners, aziridines 5b–5d were also ob-
tained as major products as a single diastereomer (entries 5–7).
The cis-stereochemistry of 5b was also verified by X-ray crystal
analysis.12 The configurations of 5c–5d were deduced from that
of 5a and 5b.
References and notes
1. (a) Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH:
Weinheim, Germany, 2002; (b) Takahashi, T.; Kanno, K. Metallocene in Regio-
and Stereoselective Synthesis In Topics in Organometallic Chemistry; Takahashi,
T., Ed.; Springer: Berlin, 2005; Vol. 8, p 217; (c) Zhang, W.; Zhang, S.; Xi, Z. Acc.
Chem. Res. 2011, 44, 541; (d) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 15; (e)
Wolan, A.; Six, Y. Tetrahedron 2010, 66, 3097; (f) Sato, F.; Urabe, H.; Okamoto, S.
Chem. Rev. 2000, 100, 2835.
2. For recent papers, see: For Ti: (a) Song, Z.; Hsieh, Y.; Kanno, K.; Nakajima, K.;
Takahashi, T. Organometallics 2011, 30, 844; (b) Yatsumonji, Y.; Sugita, T.;
Tsubouchi, A.; Takeda, T. Org. Lett. 2010, 12, 1968; (c) Hanamoto, T.; Yamada, K.
J. Org. Chem. 2009, 74, 7559; (d) Lysenko, I. L.; Kim, K.; Lee, H. G.; Cha, J. K. J. Am.
Chem. Soc. 2008, 130, 15997; (e) Reichard, H. A.; Micalizio, G. C. Angew. Chem.,
Int. Ed. 2007, 46, 1440; (f) Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007,
129, 15112; (g) Takahashi, T.; Song, Z.; Sato, K.; Kuzuba, Y.; Nakajima, K.;
Kanno, K. J. Am. Chem. Soc. 2007, 129, 11678; (h) Ryan, J.; Micalizio, G. C. J. Am.
Chem. Soc. 2006, 128, 2764; (i) Takahashi, T.; Kuzuba, Y.; Kong, F.; Nakajima, K.;
Xi, Z. J. Am. Chem. Soc. 2005, 127, 17188; (j) Urabe, H.; Mitsui, K.; Ohta, S.; Sato,
F. J. Am. Chem. Soc. 2003, 125, 6074; For Zr: (k) Fu, X.; Yu, S.; Fan, G.; Liu, Y.; Li, Y.
Organometallics 2012, 31, 531; (l) Zhao, J.; Zhang, S.; Zhang, W.; Xi, Z.
Organometallics 2011, 30, 3464; (m) Zhang, S.; Zhao, J.; Zhang, W.; Xi, Z. Org.
Lett. 2011, 13, 1626; (n) Zhang, S.; Zhang, W. –X.; Zhao, J.; Xi, Z. Chem. Eur. J.
2011, 17, 2442; (o) Zhou, Y.; Wang, Y.; Xi, C. Organometallics 2011, 30, 5077; (p)
Fu, X.; Liu, Y.; Li, Y. Organometallics 2010, 29, 3012; (q) Luo, Q.; Wang, C.; Gu, L.;
Zhang, W. –X.; Xi, Z. Chem. Asian J. 2010, 5, 1120; (r) Zhang, S.; Sun, X.; Zhang,
W. –X.; Xi, Z. Chem. Eur. J. 2009, 15, 12608; (s) Zhang, W. –X.; Zhang, S.; Sun, X.;
Nishiura, M.; Hou, Z.; Xi, Z. Angew. Chem., Int. Ed. 2009, 48, 7227; (t) Li, S.; Qu,
H.; Zhou, L.; Kanno, K.; Guo, Q.; Shen, B.; Takahashi, T. Org. Lett. 2009, 11, 3318;
(u) Ni, Y.; Nakajima, K.; Kanno, K.; Takahashi, T. Org. Lett. 2009, 11, 3702; (v) Fu,
X.; Chen, J.; Li, G.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 5500; (w) Zhang, H.; Fu,
X.; Chen, J.; Wang, E.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 9351.
3. Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem.
Soc. 1989, 111, 4486.
Although the detailed mechanism for the formation of
aziridines is not clear yet, we tentatively propose the following
pathway (Scheme 2): Insertion of a carbonyl group to azatitana-
cyclopentane 2a affords hetero-substituted titanacycle 6. As indi-
cated by hydrolysis results, the two phenyl groups in 6 orient
trans in the major isomer in order to avoid the steric hindrance.
i
Ring-opening of 6 by PrOMgCl produced by reactions of Ti(OiPr)4
and c-C5H9MgCl occurs to deliver a linear complex 7.13 Attack of
nitrogen nucleophile to the adjacent carbon from the backside of
the oxygen leaving group provides the ring-closure product cis-
aziridine 5a.
4. Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1992, 33, 4469.
5. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835;
(b)Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto,
H., Eds., 1st ed.; Springer: Berlin, 1999.
In conclusion, we have developed an efficient method for the
cross coupling reactions of imines with ketones or aldehydes using
Ti(OiPr)4/c-C5H9MgCl reagent. The present methodology is conve-
nient and practical for the synthesis of 1,2-amino alcohols. In addi-
tion, the coupling reactions with benzaldehyde or electron-poor
aryl aldehydes afford aziridines as major products in a stereoselec-
tive manner. Further studies on the scope and limitations of this
method are currently in progress.
6. Gao, Y.; Yoshida, Y.; Sato, F. Synlett 1997, 1353.
7. (a) Chen, J.; Liu, Y. Tetrahedron Lett. 2008, 49, 6655; (b) Chen, J.; Liu, Y.
Organometallics 2010, 29, 505.
8. (a) Lecornué, F.; Ollivier, J. Chem. Commun. 2003, 584; (b) Takahashi, M.;
Micalizio, G. C. J. Am. Chem. Soc. 2007, 129, 7514; (c) Chen, M. Z.; McLaughlin,
M.; Takahashi, M.; Tarselli, M. A.; Yang, D.; Umenmura, S.; Micalizio, G. C. J. Org.
Chem. 2010, 75, 8048.
9. Fukuhara, K.; Okamoto, S.; Sato, F. Org. Lett. 2003, 5, 2145.
10. Bach, J.; Berenguer, R.; Garcia, J.; Loscertales, T.; Vilarrasa, J. J. Org. Chem. 1996,
61, 9021.
11. Kureshy, R. I.; Prathap, K. J.; Agrawal, S.; Khan, N. H.; Abdi, S. H. R.; Jasra, R. V.
Eur. J. Org. Chem. 2008, 3118.
12. See Supplementary data
Supplementary data
13. For ligand exchange reactions of titanium complexes with lithium or sodium
alkoxides, see Ref. 8b,c.
Supplementary data associated with this article can be found, in