2930
N. G. Lukyanenko et al. / Tetrahedron Letters 45 (2004) 2927–2930
70 eV, m=z (%) 564 (100, Mþ), 282 (8), 212 (20). UV–vis,
References and notes
CH3CN, kmax (log e) 271 (4.97), 310 (4.47), 334 (4.36), 468
(2.46). Anal. calcd for C35H32O7: C, 74.45; H, 5.71. Found:
C, 74.28; H, 5.94. Crownophane 5b: 31%; mp 170–171 ꢁC.
1H NMR (300 MHz; CDCl3; d, ppm; J, Hz) 3.70–3.83 (m,
12H), 3.84–3.95 (m, 8H), 4.15 (t, 4H, J ¼ 4:52), 6.62 (s,
2H), 6.76 (d, 1H, J ¼ 2:18), 6.80 (d, 5H, J ¼ 8:72), 6.93 (d,
2H, J ¼ 2:49), 6.99 (d, 2H, J ¼ 8:41), 7.15 (d, 4H,
J ¼ 8:71). 13C NMR (75.5 MHz; CDCl3; d, ppm; J, Hz)
67.5, 67.8, 69.5, 69.9, 70.9, 71.1, 110.4, 114.9, 120.4, 120.5,
125.8, 127.2, 130.4, 135.8, 137.3, 158.1, 159.0, 193.3; EI-
MS, 70 eV, m=z (%) 652 (100, Mþ), 326 (5), 212 (11). UV–
vis, CH3CN, kmax (log e) 271 (4.94), 308 (4.48), 334 (4.37),
468 (2.62). Anal. calcd for C39H40O9: C, 71.76; H, 6.18.
Found: C, 71.55; H, 6.01.
1. Inokuma, S.; Sakaki, S.; Nishimura, J. Top. Curr. Chem.
1994, 172, 87–118.
2. Tsuzuki, S.; Houjou, H.; Nagawa, Y.; Goto, M.; Hiratani,
K. J. Am. Chem. Soc. 2001, 123, 4255–4258.
3. Nehlig, A.; Kaufmann, G.; Asfari, Z.; Vicens, J. Tetrahe-
dron Lett. 1999, 40, 5865–5868.
4. Fis, M. J.; Seiler, P.; Muslinkina, L. A.; Badertscher, M.;
Pretsch, E.; Diederich, F.; Alvarado, R.; Echegoyen, L.;
Nunez, I. P. Helv. Chim. Acta 2002, 85, 2009–2055.
5. Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc.,
Perkin Trans. 1 2000, 3155–3184.
6. Balzani, V.; Credi, A.; Raymo, F.; Stoddart, J. F. Angew.
Chem. Int. Ed. 2000, 39, 3348–3391.
14. X-ray quality single crystals were obtained by slow
evaporation of C6H6 and MeCN solutions of 5a and 5b,
respectively. Measurements were made on a Nonius CCD
diffractometer with graphite monochromatized Mo-Ka
7. Blanco, M.-J.; Jimenez, M. C.; Chambron, J.-C.; Heitz,
V.; Linke, M.; Sauvage, J.-P. Chem. Soc. Rev. 1999, 28,
293–305.
8. Andrews, E. R.; Fleming, R. W.; Grisar, J. M.; Kihm, J.
C.; Wenstrup, D. L.; Mayer, G. D. J. Med. Chem. 1974,
17, 882–886.
9. Sieber, R. H. Liebigs Ann. 1969, 730, 31–46.
10. Meier, H. Angew. Chem. Int. Ed. 1992, 31, 1399–1420.
11. Lukyanenko, N. G.; Kirichenko, T. I.; Lyapunov, A. Yu.;
Bogaschenko, T. Yu.; Pastushok, V. N.; Simonov, Yu. A.;
Fonari, M. S.; Botoshansky, M. M. Tetrahedron Lett.
2003, 44, 7373–7376.
ꢀ
radiation (k ¼ 0:71073 A). The structures were solved by
direct methods and refinement, based on F 2, was made by
full-matrix least-squares techniques. All non-hydrogen
atoms were refined isotropically and hydrogen atoms were
placed in geometrically calculated positions and refined
with temperature factors 1.2 times those of their bonded
atoms. Crystal data for 5a: C35H32O7, 564.63, triclinic, P1,
ꢀ
a ¼ 9:390ð2Þ,
b ¼ 11:625ð2Þ,
c ¼ 14:118ð3Þ A,
a ¼
3
ꢀ
79:49ð2Þꢁ, b ¼ 83:21ð2Þꢁ, c ¼ 68:51ð2Þꢁ, V ¼ 1407:7ð5Þ A ,
Z ¼ 2, qcalcd ¼ 1:332 g cmꢁ3, l ¼ 0:092 mmꢁ1, F ð000Þ ¼
596, 2hmax ¼ 50:70ꢁ (ꢁ11 6 h 6 10, ꢁ13 6 k 6 13, ꢁ16 6
l 6 16). Final residuals (for 380 parameters) were
R1 ¼ 0:0565 and wR2 ¼ 0:1289 for 2444 reflections with
I > 2rðIÞ, and R1 ¼ 0:1394 and wR2 ¼ 0:1544, GOF ¼
0.905 for all 4997 data. Residual electron density was
12. Diol 2a and ditosylate 3a were obtained following the
method described for compounds 2b and 3b, respec-
1
tively.11 2a: 78%; orange crystals; mp 117.5–119.5 ꢁC. H
NMR (300 MHz; CDCl3; d, ppm; J, Hz) 1.97 (br s, 2H),
3.65–3.72 (m, 4H), 3.74–3.82 (m, 4H), 3.84–3.92 (m, 4H),
4.14–4.21 (m, 4H), 6.97 (dd, 2H, J ¼ 2:18, 8.09), 7.17 (d,
2H, J ¼ 2:18), 7.29 (d, 2H, J ¼ 8:09). Anal. calcd for
C21H24O7: C, 64.94; H, 6.23. Found: C, 65.19; H, 6.29. 3a:
88%; orange crystals; mp 110–112 ꢁC. 1H NMR (300 MHz;
CDCl3; d, ppm; J, Hz) 2.42 (s, 6H), 3.73–3.83 (m, 8H),
4.07 (t, 4H, J ¼ 4:52), 4.21 (t, 4H, J ¼ 4:82), 6.95 (dd, 2H,
J ¼ 2:18, 8.10), 7.12 (d, 2H, J ¼ 2:18), 7.27–7.36 (m, 6H),
7.80 (d, 4H, J ¼ 8:09). Anal. calcd for C35H36O11S2: C,
60.33; H, 5.21. Found: C, 60.47; H, 5.41.
0.356 and )0.183 eAꢁ3. Crystal data for 5b: C39H40O9,
ꢀ
652.74, triclinic, P1, a ¼ 11:051ð2Þ, b ¼ 11:342ð2Þ, c ¼
ꢀ
15:295ð3Þ A, a ¼ 69:81ð2Þꢁ, b ¼ 74:90ð2Þꢁ, c ¼ 68:74ð2Þꢁ,
V ¼ 1656:6ð5Þ A , Z ¼ 2, qcalcd ¼ 1:308 g cmꢁ3
,
l ¼
3
ꢀ
0:092 mmꢁ1, F ð000Þ ¼ 692, hmax ¼ 50:70ꢁ (ꢁ13 6 h 6 13,
ꢁ12 6 k 6 11, ꢁ17 6 l 6 17). Final residuals (for 434
parameters) were R1 ¼ 0:0577 and wR2 ¼ 0:1142 for 2444
reflections with I > 2rðIÞ, and R1 ¼ 0:2261 and wR2 ¼
0:1616, GOF ¼ 0.661 for all 5201 data. Residual electron
13. General procedure. A solution of 4 (5.52 g, 10 mmol) and
the appropriate ditosylate (3a or 3b, 10 mmol) in dry DMF
(400 mL) was added dropwise over 10 h to a stirred
suspension of K2CO3 (5.52 g, 40 mmol) in DMF (600 mL)
under argon at 80 ꢁC and heating was maintained for a
further 40 h. The reaction mixture was filtered and the
filtrate was evaporated to dryness in vacuo. The residue
and solid obtained after the first filtration were combined,
washed with methanol and filtered. The air-dried solid was
extracted with toluene using a Soxhlet extractor for 40 h.
The toluene extract was filtered and the solid residue was
extracted with hot toluene several times until complete
extraction of the product. The solvent was removed from
the combined toluene extracts under reduced pressure and
the residue was subjected to column chromatography
(SiO2, CHCl3/MeOH, 100:1), to afford pure 5a or 5b as
orange crystals after crystallization from toluene or
MeCN, respectively. Crownophane 5a: 21%; mp 196–
197 ꢁC. 1H NMR (300 MHz; CDCl3; d, ppm; J, Hz) 3.79–
3.90 (m, 8H), 3.92 (t, 4H, J ¼ 4:25), 4.30 (t, 4H, J ¼ 4:25),
6.43 (s, 2H), 6.61 (br s, 2H), 6.73 (dd, 2H, J ¼ 2:18, 8.09),
6.77 (d, 4H, J ¼ 8:72), 7.00 (d, 4H, J ¼ 8:41), 7.13 (d, 2H,
J ¼ 8:40). 13C NMR (75.5 MHz; CDCl3; d, ppm; J, Hz)
67.4, 68.4, 69.3, 69.6, 110.8, 115.7, 119.1, 119.9, 125.6,
126.9, 130.5, 135.9, 136.0, 157.1, 158.7, 193.2; EI-MS,
density was 0.233 and )0.225 eAꢁ3. The CIF files with
ꢀ
data for 5a and 5b have been deposited, CDCC reference
codes 201313 and 201314.
15. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, J. J.
Chem. Soc., Perkin Trans. 2 2001, 651–669.
16. Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew.
Chem. Int. Ed. 2003, 42, 1210–1250.
17. Gillard, R. E.; Stoddart, J. F.; White, A. J. P.; Williams,
B. J.; Williams, D. J. J. Org. Chem. 1996, 61, 4504–
4505.
18. Bryant, W. S.; Guzei, I. A.; Rheingold, A. L.; Merola,
J. S.; Gibson, H. W. J. Org. Chem. 1998, 63, 7634–7639.
19. Fyfe, M. C. T.; Stoddart, J. F. In Advances in Supramo-
lecular Chemistry; Gokel, G. W., Ed.; JAI Press: Stam-
ford, CT, 1999; Vol. 5, pp 1–53.
20. Cantrill, S. J.; Pease, A. R.; Stoddart, J. F. J. Chem. Soc.,
Dalton Trans. 2000, 3715–3734.
21. Vetrogon, V. I.; Lukyanenko, N. G.; Schwing-Weill,
M.-J.; Arnaud-Neu, F. Talanta 1994, 41, 2105–2112.
22. Cantrill, S. J.; Fyfe, M. C. T.; Heiss, A. M.; Stoddart,
J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2,
61–64.
23. SpartanÕ02, Wavefunction, Inc. Irvine, CA.