2708 Sanda et al.
Macromolecules, Vol. 37, No. 8, 2004
sity for their helpful discussion. The authors are grateful
to Mr. Motoaki Kamachi at Showa Denko Co. for the
measurement of the electroluminescence properties of
the polymers.
Refer en ces a n d Notes
(1) For reviews, see: (a) Kippelen, B.; Golemme, A.; Hendrickx,
E.; Wang, J . F.; Marder, S. R.; Peyghambarian, N. Photore-
fractive Polymers and Polymer-Dispersed Liquid Crystals. In
Field Responsive Polymers: Electroresponsive, Photorespon-
sive, and Responsive Polymers in Chemistry and Biology;
Khan, I. M., Harrison, J . S., Eds.; ACS Symposium Series
726; American Chemical Society: Washington, D.C., 1999; p
204. (b) Wang, Y. Z.; Epstein, A. J . Acc. Chem. Res. 1999,
32, 217. (c) Kippelen, B.; Meerholz, K.; Peyghambarian, N.
An Introduction to Photorefractive Polymers. In Nonlinear
Optics of Organic Molecules and Polymers; Nalwa, H. S.,
Miyata, S., Eds.; CRC: Boca Raton, FL, 1997; p 465.
(2) For reviews, see: (a) Nagai, K.; Masuda, T.; Nakagawa, T.;
Freeman, B. D.; Pinnau, I. Prog. Polym. Sci. 2001, 26, 721.
(b) Masuda, T. Acetylenic Polymers. In Polymeric Material
Encyclopedia; Salamone, J . C., Ed.; CRC Press: New York,
1996; Vol. 1, p 32.
(3) (a) Xie, Z. L.; Lam, J . W. Y.; Qiu, C. F.; Wong, M.; Kwok, H.
S.; Tang, B. Z. Polym. Mater. Sci. Eng. 2003, 89, 416. (b) Xie,
Z. L.; Lam, J . W. Y.; Qiu, C. F.; Man, W.; Kwok, H. S.; Tang,
B. Z. Polym. Mater. Sci. Eng. 2003, 88, 410. (c) Xie, Z. L.;
Lam, J . W. Y.; Chen, J .; Dong, Y. P.; Qiu, C. F.; Man, W.;
Kwok, H. S.; Tang, B. Z. ACS Polym. Prepr. 2002, 43 (1), 411.
(d) Lee, P. P. S.; Cheuk, K. K. L.; Dong, Y. P.; Chau, F. S.
W.; Tang, B. Z. Polym. Mater. Sci. Eng. 2001, 84, 637. (e)
Dong, Y. P.; Lam, J . W. Y.; Lee, P. P. S.; Tang, B. Z. Polym.
Mater. Sci. Eng. 2001, 84, 616. (f) Lee, P. P. S.; Dong, Y. P.;
Cheuk, K. K. L.; Chau, F. S. W.; Tang, B. Z. ACS Polym.
Prepr. 2001, 42 (1), 502. (g) Tang, B. Z.; Chen, H. Z.; Xu, R.
S.; Lam, J . W. Y.; Cheuk, K. K. L.; Wong, H. N. C.; Wang, M.
Chem. Mater. 2000, 12, 213. (h) Pui-Sze Lee, P.; Geng, Y.;
Kwok, H. S.; Tang, B. Z. Thin Solid Films 2000, 363, 149.
(4) Onishi, K.; Advincula, R. C.; Abdul Karim, S. M.; Nakai, T.;
Masuda, T. ACS Polym. Prepr. 2002, 43 (1), 171.
F igu r e 8. TGA curves of poly(t-Bu2CzPA) and poly(CzCOPA)
obtained by the polymerization with Rh and W catalysts
measured in nitrogen with a heating rate of 10 °C/min.
mum was 13-18 cd/m2. The electroluminescence ef-
ficiency was low compared to those of PVCz and poly(4-
(9-carbzolylstyrene)).19 The lower electroluminescence
efficiency of the carbazole-containing polyacetylene than
the carbazole-containing vinyl polymers may be due to
quenching of the luminescence of the Ir complexes by
the polyacetylene main chain. The high light-emitting
voltage of the device is possibly due to the lower charge
carrier mobility of poly(t-Bu2CzPA) than that of PVCz.
Figure 8 depicts the TGA traces of the polymers
measured under nitrogen. The weight loss began around
200 °C and continued gradually up to 700 °C. In the
early stage of the TGA measurement, the W-based
polymers lost their weight faster than Rh-based poly-
mers. Considering that the former polymers have a
predominantly trans-trans structure, it seems that the
main chain fission takes place more rapidly due to the
steric repulsion between polymer side chains larger than
the latter ones, as shown in Figure 4.
(5) Fukushima, T.; Sone, T.; Tabata, M.; Sadahiro, Y. IUPAC
World Polymer Congress 2002, Beijing, China, Preprints p
167.
(6) Sata, T.; Nomura, R.; Wada, T.; Sasabe, H.; Masuda, T. J .
Polym. Sci., Part A: Polym. Chem. 1998, 36, 2489.
(7) Nakano, M.; Masuda, T.; Higashimura, T. Polym. Bull. 1995,
34, 191.
Su m m a r y
In this article we demonstrated the synthesis of novel
carbazole-containing polyacetylenes, poly(t-Bu2CzPA)
and poly(CzCOPA). Both the polymers obtained by the
polymerization using W catalysts exhibited UV-vis
absorption band edges at longer wavelengths than the
Rh-based ones. It seems that the W-based polymers
have main chain conjugation longer than the Rh-based
counterparts. Poly(t-Bu2CzPA) showed conductivity 1
order higher than that of PVCz, probably due to the
larger number of charge carriers. The current of poly-
(t-Bu2CzPA) under photoirradiation was 40-50 times
higher than that in the dark. It was confirmed that it
works as an optoelectronic functional polymer. The
electron mobility of poly(t-Bu2CzPA) was lower than
that of PVCz. The hindrance of carrier transport path-
ways by the bulky t-Bu group may be responsible for
this result. Poly(t-Bu2CzPA) doped with Ir(btp)3(acac)
or Ir(t-Buppy)3 emitted luminescence when 20-25 V
was applied.
(8) Tachimori, H.; Masuda, T. J . Polym. Sci., Part A: Polym.
Chem. 1995, 33, 2079.
(9) Sanda, F.; Kawaguchi, T.; Masuda, T.; Kobayashi, N. Mac-
romolecules 2003, 36, 2224.
(10) Zhu, Z.; Moore, J . S. J . Org. Chem. 2000, 65, 116.
(11) Zhu, W.; Liu, C.; Su, L.; Yang, W.; Yuan, M.; Cao, Y. J . Mater.
Chem. 2003, 13, 50.
(12) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.;
Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.;
Thompson, M. E. J . Am. Chem. Soc. 2001, 123, 4304.
(13) Tabata, M.; Yang, W.; Yokota, K. Polym. J . 1990, 22, 1105.
(14) Sedlacek, J .; Pacovska, M.; Vohlidal, J .; Grubisic-Gallot, Z.;
Zigon, M. Macromol. Chem. Phys. 1995, 196, 1705.
(15) Masuda, T.; Takahashi, T.; Yamamoto, K.; Higashimura, T.
J . Polym. Sci., Polym. Chem. Ed. 1982, 20, 2603.
(16) Okamoto, K.; Kusabayashi, S.; Mikawa, H. Bull. Chem. Soc.
J pn. 1973, 46, 1953.
(17) Okamoto, K.; Kusabayashi, S.; Mikawa, H. Bull. Chem. Soc.
J pn. 1973, 46, 2324.
(18) Yoshida, M.; Ayano, M.; Kobayashi, N. J . Polym. Sci., Part
B: Polym. Phys. 2000, 38, 362.
(19) The devices similarly formulated from PVCz and poly(4-(9-
carbzolylstyrene)) using Ir(t-Buppy)3 as a dopant started
emitting luminescence at 5-6 V, and the luminance maxima
were 4020 and 6290 cd/m2, respectively.
Ack n ow led gm en t. The authors thank Professor
Shinzaburo Ito and Dr. Hideo Ohkita at Kyoto Univer-
MA035972G