Chemical Science
Edge Article
by reaction with proteinogenic indoles from Cbz–Trp–OMe and
Cbz–Val–Trp–OMe. For instance 8e and 8f were formed in
moderate to good HPLC ratios. Protected aspartic acid, histi-
dine and arginine were also submitted to the reaction condi-
tions and led to the formation of arylated peptides but with
lower HPLC ratios (<25%, see SI for more details).39 Unfortu-
nately, the current conditions for phenols were not compatible
with tetramers and would require further optimization .
6 H. Hofer and M. Moest, Justus Liebigs Ann. Chem., 1902, 323,
284–323.
7 (a) P. Renaud and D. Seebach, Angew. Chem., Int. Ed., 1986,
25, 843–844; (b) D. Seebach, R. Charczuk, C. Gerber,
P. Renaud, H. Berner and H. Schneider, Helv. Chim. Acta,
1989, 72, 401–425; (c) C. Gerber and D. Seebach, Helv.
Chim. Acta, 1991, 74, 1373–1385.
8 (a) W. N. Speckamp and M. J. Moolenaar, Tetrahedron, 2000,
56, 3817–3856; (b) M. G. Vinogradov, O. V. Turova and
S. G. Zlotin, Russ. Chem. Rev., 2017, 86, 1–17; (c) P. Wu and
T. E. Nielsen, Chem. Rev., 2017, 117, 7811–7856.
3. Conclusion
9 Y. Lin and L. R. Malins, Chem. Sci., 2020, 11, 10752–10758.
In summary, we have developed a photoredox-catalyzed oxida-
tive decarboxylative strategy towards the introduction of diverse
functional groups on peptides. Under the developed conditions,
valuable alcohols were successfully introduced leading to
structurally diverse N,O-acetals. Moreover, the N,O-acetals were
also employed as key reactive intermediates for arylation with
phenols and indoles. Bioconjugation of bioactive compounds
such as estrone or melatonin with dipeptides was possible.
Additionally, serine, threonine, tyrosine and tryptophan deriv-
atives could be used as nucleophilic partners to give new types
of cross-linked peptides. As a proof of concept for the arylation
of larger peptides, indole and two tryptophan derivatives were
successfully added to several tetrapeptides.
´
´
10 (a) A. Boto, R. Hernandez and E. Suarez, Tetrahedron Lett.,
´
1999, 40, 5945–5948; (b) A. Boto, R. Hernandez and
´
E. Suarez, J. Org. Chem., 2000, 65, 4930–4937.
11 Y. Harayama, M. Yoshida, D. Kamimura, Y. Wada and
Y. Kita, Chem.–Eur. J., 2006, 12, 4893–4899.
´
12 Selected examples: (a) A. Boto, J. A. Gallardo, R. Hernandez
and C. J. Saavedra, Tetrahedron Lett., 2005, 46, 7807–7811;
´
´
(b) C. J. Saavedra, R. Hernandez, A. Boto and E. Alvarez,
Tetrahedron Lett., 2006, 47, 8757–8760; (c) R. Fan, W. Li
and B. Wang, Org. Biomol. Chem., 2008, 6, 4615; (d) K. Xu,
Z. Wang, J. Zhang, L. Yu and J. Tan, Org. Lett., 2015, 17,
´
´
4476–4478; (e) D. Hernandez, A. Boto, D. Guzman and
´
E. Alvarez, Org. Biomol. Chem., 2017, 15, 7736–7742.
13 (a) V. A. Larionov, N. V. Stoletova and V. I. Maleev, Adv. Synth.
Catal., 2020, 362, 4325–4367; (b) F. J. Aguilar Troyano,
Conflicts of interest
´
´
K. Merkens, K. Anwar and A. Gomez-Suarez, Angew. Chem.,
Int. Ed., DOI: 10.1002/anie.202010157; (c) T. A. King,
J. Mandrup Kandemir, S. J. Walsh and D. R. Spring, Chem.
Soc. Rev., DOI: 10.1039/d0cs00344a; (d) L. R. Malins, Pept.
Sci., 2018, 110, e24049; (e) C. Hu and Y. Chen, Tetrahedron
There are no conicts to declare.
Acknowledgements
This work is supported by the Swiss National Science Founda-
tion (Grant No. 200020_182798), the NCCR Chemical Biology of
the Swiss National Science Foundation and EPFL. The MS
service from EPFL-ISIC is acknowledged for their support.
¨
Lett., 2015, 56, 884–888; (f) C. Bottecchia and T. Noel,
Chem.–Eur. J., 2019, 25, 26–42; (g) S. Mondal and
S. Chowdhury, Adv. Synth. Catal., 2018, 360, 1884–1912.
14 (a) K. Maeda, H. Saito, K. Osaka, K. Nishikawa, M. Sugie,
T. Morita, I. Takahashi and Y. Yoshimi, Tetrahedron, 2015,
71, 1117–1123; (b) B. Lipp, A. M. Nauth and T. Opatz, J.
Org. Chem., 2016, 81, 6875–6882.
Notes and references
1 (a) K. Fosgerau and T. Hoffmann, Drug Discov. Today, 2015, 15 (a) T. Itou, Y. Yoshimi, K. Nishikawa, T. Morita, Y. Okada,
¨
20, 122–128; (b) T. Dang and R. D. Sussmuth, Acc. Chem.
N. Ichinose and M. Hatanaka, Chem. Commun., 2010, 46,
6177; (b) C. Cassani, G. Bergonzini and C.-J. Wallentin,
Org. Lett., 2014, 16, 4228–4231.
Res., 2017, 50, 1566–1576; (c) I. W. Hamley, Chem. Rev.,
2017, 117, 14015–14041; (d) A. Henninot, J. C. Collins and
J. M. Nuss, J. Med. Chem., 2018, 61, 1382–1414.
2 D. J. Craik, D. P. Fairlie, S. Liras and D. Price, Chem. Biol.
Drug Des., 2013, 81, 136–147.
16 S. B. Lang, K. M. O'Nele, J. T. Douglas and J. A. Tunge,
Chem.–Eur. J., 2015, 21, 18589–18593.
17 M. Garreau, F. Le Vaillant and J. Waser, Angew. Chem., Int.
Ed., 2019, 58, 8182–8186.
3 (a) T. Ueda, Biochim. Biophys. Acta Protein Proteonomics, 2014,
1844, 2053–2057; (b) P. M. Drake and D. Rabuka, Curr. Opin. 18 F. Le Vaillant, M. D. Wodrich and J. Waser, Chem. Sci., 2017,
Chem. Biol., 2015, 28, 174–180; (c) D. T. Cohen, C. Zhang, 8, 1790–1800.
C. M. Fadzen, A. J. Mijalis, L. Hie, K. D. Johnson, 19 D. C. Marcote, R. Street-Jeakings, E. Dauncey, J. J. Douglas,
Z. Shriver, O. Plante, S. J. Miller, S. L. Buchwald and
B. L. Pentelute, Nat. Chem., 2019, 11, 78–85.
A. Ruffoni and D. Leonori, Org. Biomol. Chem., 2019, 17,
1839–1842.
4 S. Sharma and M. R. Schiller, Crit. Rev. Biochem. Mol. Biol., 20 (a) L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am.
2019, 54, 85–102.
Chem. Soc., 2014, 136, 10886–10889; (b) S. J. McCarver,
J. X. Qiao, J. Carpenter, R. M. Borzilleri, M. A. Poss,
M. D. Eastgate, M. M. Miller and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2017, 56, 728–732; (c) S. Bloom,
5 (a) J. N. deGruyter, L. R. Malins and P. S. Baran, Biochemistry,
2017, 56, 3863–3873; (b) C. B. Rosen and M. B. Francis, Nat.
Chem. Biol., 2017, 13, 697–705.
2472 | Chem. Sci., 2021, 12, 2467–2473
© 2021 The Author(s). Published by the Royal Society of Chemistry