10.1002/cctc.201801381
ChemCatChem
COMMUNICATION
[8]
[9]
a) L. Mialon, R. Vanderhenst, A. G. Pemba, S. A. Miller, Macromol. Rapid.
Comm. 2011, 32, 1386-1392; b) M. Firdaus, M. A. R. Meier, Eur. Polym.
J. 2013, 49, 156-166; c) M. Fache, E. Darroman, V. Besse, R. Auvergne,
S. Caillol, B. Boutevin, Green Chem. 2014, 16, 1987-1998; d) C. Aouf, J.
Lecomte, P. Villeneuve, E. Dubreucq, H. Fulcrand, Green Chem. 2012,
14, 2328-2336; e) J. F. Stanzione, III, J. M. Sadler, J. J. La Scala, R. P.
Wool, ChemSuschem 2012, 5, 1291-1297.
and 11.3 kg/kg respectively (Tables S4-S9) and the E-factor of
bio-based poly(ester ketone)s 6a, 6b and 6c were determined as
12.85, 13.1 and 20.8 kg/kg respectively (Tables S10-S15). These
are in accordance with Sheldon’s analysis of fine chemicals that
have an E-factor of 5-50[25]. In this work, only moderate yields of
the first aldol condensation reaction and the subsequent
polymerization have been achieved which is responsible for the
relatively high values of the E-factor. It is anticipated that these
yields could be improved by using new catalytic and polymeric
technology, such as solid basic catalysts,[26] and this is currently
the subject of ongoing research in our laboratory.
a) J. Dai, Y. Peng, N. Teng, Y. Liu, C. Liu, X. Shen, S. Mahmud, J. Zhu,
X. Liu, ACS Sustain. Chem. Eng. 2018; b) J. Dai, N. Teng, X. Shen, Y.
Liu, L. Cao, J. Zhu, X. Liu, Ing. Eng. Chem. Res. 2018, 57, 3091-3102;
c) S. Wang, S. Ma, C. Xu, Y. Liu, J. Dai, Z. Wang, X. Liu, J. Chen, X.
Shen, J. Wei, J. Zhu, Macromolecules 2017, 50, 1892-1901.
[10] a) H. Xie, Z. K. Zhao, Q. Wang, ChemSuschem 2012, 5, 901-905; b) Z.
Zhang, Q. Wang, H. Xie, W. Liu, Z. Zhao, ChemSuschem 2011, 4, 131-
138; c) A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso,
Green Chem. 2011, 13, 754-793; d) H. Tang, N. Li, F. Chen, G. Y. Li, A.
Q. Wang, Y. Cong, X. D. Wang, T. Zhang, Green Chem. 2017, 19, 1855-
1860.
In conclusion, fully bio-based aromatic-aliphatic monomers
have been prepared via
economical aldol reaction between lignin-derived aromatic
aldehydes and carbohydrate-derived levulinic acid. From these
a green organocatalytic, atom
monomers,
a series of novel aromatic-aliphatic poly(ester
[11] a) Z. H. Zhang, K. Dong, Z. B. Zhao, ChemSuschem 2011, 4, 112-118;
b) J. Ma, Z. Du, J. Xu, Q. Chu, Y. Pang, ChemSuschem 2011, 4, 51-54;
c) M. Chatterjee, T. Ishizaka, A. Chatterjee, H. Kawanami, Green Chem.
2017, 19, 1315-1326.
ketone)s were successfully prepared and characterized. These
bio-based poly(ester ketone)s exhibit comparable thermal
properties to conventional thermosetting materials. As the
obtained functional phenol carboxylic acid monomers can be
further derived to other polymeric monomers, such as bis-epoxy,
which have great potential application in the area of polymers
synthesis, therefore, future studies will focus on synthesis of new
polymeric derivatives, polymer degradation behavior, post-
modification of the poly(ester ketone)s as well as screening of
new catalytic systems and polymerization technologies for the
preparation of the monomers and polymers. The findings in this
study open a new pathway to design sustainable polymers from
lignocellulosic biomass.
[12] a) T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos,
J. A. Lopez-Sanchez, M. Sankar, Q. He, C. J. Kiely, G. J. Hutchings, F.
Cavani, Green Chem. 2011, 13, 2091-2099; b) E. Hayashi, T. Komanoya,
K. Kamata, M. Hara, ChemSuschem 2017, 10, 654-658; c) D. K. Mishra,
H. J. Lee, J. Kim, H. S. Lee, J. K. Cho, Y. W. Suh, Y. Yi, Y. J. Kim, Green
Chem. 2017, 19, 1619-1623.
[13] a) J. Ma, Y. Pang, M. Wang, J. Xu, H. Ma, X. Nie, J. Mater. Chem. 2012,
22, 3457-3461; b) H. Yue, Y. Zhao, X. Ma, J. Gong, Chemical Society
Reviews 2012, 41, 4218-4244; c) J. Wang, X. Liu, Y. Zhang, F. Liu, J.
Zhu, Polymer 2016, 103, 1-8.
[14] a) K. Yan, C. Jarvis, J. Gu, Y. Yan, Renew. Sust. Energ. Rev. 2015, 51,
986-997; b) A. Morone, M. Apte, R. A. Pandey, Renew. Sust. Energ. Rev.
2015, 51, 548-565; c) N. Brun, P. Hesemann, D. Esposito, Chem. Sci.
2017, 8, 4724-4738.
[15] M. J. Gilkey, B. Xu, Acs. Catal. 2016, 6, 1420-1436.
[16] a) C. Vilela, A. F. Sousa, A. C. Fonseca, A. C. Serra, J. F. J. Coelho, C.
S. R. Freire, A. J. D. Silvestre, Polym. Chem. 2014, 5, 3119-3141; b) A.
Llevot, P.-K. Dannecker, M. von Czapiewski, L. C. Over, Z. Soeyler, M.
A. R. Meier, Chem. Eur. J. 2016, 22, 11509-11520.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (NSFC no.21704019 and 21644012).
[17] J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554.
[18] a) J. M. Concellón, H. Rodríguez-Solla, C. Méjica, Tetrahedron 2006, 62,
3292-3300; b) Webster, X. Francis, Spectrometric identification of
organic compounds, Wiley, 1991.
Keywords: Vanillin • Levulinic acid • Lignocellulose • Poly(ester
ketone) • Aldol condensation
[19] K. Sakthivel, W. Notz, T. Bui, C. F. Barbas, J. Am. Chem. Soc. 2001, 123,
5260-5267.
[1]
a) A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J.
Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L.
Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science
2006, 311, 484-489; b) V. K. Thakur, M. K. Thakur, P. Raghavan, M. R.
Kessler, ACS Sustain. Chem. Eng. 2014, 2, 1072-1092; c) Y. Zhu, C.
Romain, C. K. Williams, Nature 2016, 540, 354-362.
[20] N. Mase, F. Tanaka, C. F. Barbas, Org. Lett. 2003, 5, 4369-4372.
[21] G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz, R. Terrell, J.
Am. Chem. Soc. 1963, 85, 207-222.
[22] a) W. N. Ottou, H. Sardon, D. Mecerreyes, J. Vignolle, D. Taton, Prog.
Polym. Sci. 2016, 56, 64-115; b) P. Olsen, K. Odelius, A.-C. Albertsson,
Biomacromolecules 2016, 17, 699-709; c) E. Champagne, S. Strandman,
X.-X. Zhu, Macromol. Rapid. Comm. 2016, 37, 1986-2004.
[23] K. C. Yen, E. M. Woo, K. Tashiro, Polymer 2009, 50, 6312-6322.
[24] S. Ohsawa, K. Morino, A. Sudo, T. Endo, Macromolecules 2010, 43,
3585-3588.
[2]
[3]
[4]
a) A. Gandini, T. M. Lacerda, A. J. F. Carvalho, E. Trovatti, Chem. Rev.
2016, 116, 1637-1669; b) D. K. Schneiderman, M. A. Hillmyer,
Macromolecules 2017, 50, 3733-3750.
a) A. Gandini, T. M. Lacerda, Prog. Polym. Sci. 2015, 48, 1-39; b) D. L.
Gall, J. Ralph, T. J. Donohue, D. R. Noguera, Cur. Opin. Biotechnol.
2017, 45, 120-126.
[25] a) R. A. Sheldon, Green Chem. 2007, 9, 1273-1283; b) R. A. Sheldon,
Chem. Commun. 2008, 0, 3352-3365; c) R. A. Sheldon, Green Chem.
2017, 19, 18-43.
a) J. S. Luterbacher, D. Martin Alonso, J. A. Dumesic, Green Chem. 2014,
16, 4816-4838; b) A. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail,
Macromol. Rapid. Comm. 2016, 37, 9-28; c) B. M. Upton, A. M. Kasko,
Chem. Rev. 2016, 116, 2275-2306; d) P. Gallezot, Chem. Soc. Rev.
2012, 41, 1538-1558.
[26] L. Zhu, X. Q. Liu, H. L. Jiang, L. B. Sun, Chem. Rev. 2017, 117, 8129-
8176.
[5]
R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A.
Bruijnincx, B. M. Weckhuysen, Angew. Chem., Int. Ed. 2016, 55, 8164-
8215.
[6]
[7]
W. Schutyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T.
Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852-908.
L. Mialon, A. G. Pemba, S. A. Miller, Green Chem. 2010, 12, 1704-1706.
This article is protected by copyright. All rights reserved.