3062
E. A. Lewis et al. / Tetrahedron Letters 45 (2004) 3059–3062
2. (a) Parker, D.; Morphy, J. R.; Jankowski, K.; Cox, J. Pure
NMR (400 MHz, CD2Cl2): d 8.08 (d, J ¼ 8:6 Hz, 2H,
ArH), 7.27 (d, J ¼ 8:6 Hz, 2H, ArH), 3.80–2.00 (m, 18H,
CH2-a-N · 8, CH2-c-N · 1), 1.80–1.70 (m, 2H, CH2-b-N),
1.25(s, 3H, C H3), 1.20 (s, 3H, CH3), 1.20–1.00 (m, 1H,
CH-b-N); 13C NMR (100 MHz, CD2Cl2): d 150.47 (ArC),
146.72 (ArC), 130.18 (ArCH), 123.86 (ArCH), 74.47
(NCN), 74.35(N CN), 52.94 (br, CH2-a-N), 51.33 (br,
CH2-a-N), 51.06 (br, CH2-a-N · 2), 49.49 (br, CH2-a-N),
49.22 (br, CH2-a-N), 47.07 (br, CH2-a-N), 45.30 (br, CH2-
a-N), 44.85( CH2-c-N), 34.92 (CH-b-N), 18.48 (CH2-b-N),
11.27 (CH3), 9.89 (CH3); 1H COSY, 1H–13C HETCOR
and 13C DEPT experiments were used to make resonance
assignments; integration of 1H NMR spectrum indicates
alternative diastereoisomer <5%; 13C NMR was also
recorded in CDCl3 to observe any resonances overlapping
with CD2Cl2 signals; HR ESMSꢀ: m=z calcd for
C21H30N5O2 384.2405[(M ꢀ1)ꢀ]; found 384.2403.
Appl. Chem. 1989, 61, 1637–1641; (b) Anderson, C. J.;
Green, M. A.; Fujibayashi, Y. In Handbook of Radio-
pharmaceuticals; Welch, M. J., Redvanly, C. S., Eds.; John
Wiley & Sons Ltd: New York, 2003; pp 401–422.
ꢁ
ꢁ
3. Specific examples include: (a) Ruloff, R.; Toth, E.;
Scopelliti, R.; Tripier, R.; Handel, H.; Merbach, A. E.
Chem. Commun. 2002, 2630–2631; (b) Mathias, C. J.;
Welch, M. J.; Green, M. A.; Diril, H.; Meares, C. F.;
Gropler, R. J.; Gergmann, S. R. J. Nucl. Med. 1991, 32,
475–480; (c) Moi, M. K.; Meares, C. F.; McCall, M. J.;
Cole, W. C.; DeNardo, S. J. Anal. Biochem. 1985, 1, 249–
253; (d) DeNardo, G. L.; DeNardo, S. J.; Meares, C. F.;
Kukis, D.; Duril, H.; McCall, M. J.; Adams, G. P.;
Mausner, L. F.; Moody, D. C.; Desphande, S. V.
Antibody, Immunoconjugates, Radiopharm. 1991, 4, 777–
785.
4. Meares, C. F.; Wensel, T. G. Acc. Chem. Res. 1984, 17,
202–209.
14. (a) Wong, E. H.; Weisman, G. R.; Hill, D. C.; Reed, D. P.;
Rogers, M. E.; Condon, J. S.; Fagan, M. A.; Calabrese, J.
C.; Lam, K.-C.; Guzei, I. A.; Rheingold, A. L. J. Am.
Chem. Soc. 2000, 122, 10561–10572; (b) Weisman, G. R.;
Wong, E. H.; Hill, D. C.; Rogers, M. E.; Reed, D. P.;
Calabrese, J. C. Chem. Commun. 1996, 947–948.
ꢁ
5. Herve, G.; Bernard, H.; Le Bris, N.; Yaouanc, J.-J.;
Handel, H.; Toupet, L. Tetrahedron Lett. 1998, 39, 6861–
6864; procedure for bridge removal was followed for
related systems in this work.
6. Typically based on: Richman, J. E.; Atkins, T. A. J. Am.
Chem. Soc. 1974, 96, 2268–2271.
15. Minor variations in reaction times and overall yields are
reported; similar reactivity has been observed in our
laboratory: (a) Ruser, G.; Ritter, W.; Maeke, H. R.
Bioconjugate Chem. 1990, 1, 345–349; (b) McCall, M. J.;
Diril, H.; Meares, C. F. Bioconjugate Chem. 1990, 1, 222–
226; (c) Parker, D. In Macrocycle Synthesis, A Practical
Approach; Parker, D., Ed.; Oxford University Press:
Oxford, 1996; pp 14–17.
ꢁ
7. Denat, F.; Brandes, S.; Guilard, R. Synlett 2000, 561–574,
and references cited therein.
8. For example: (a) Mishra, A. K.; Chatal, J.-F. New J.
Chem. 2001, 25, 336–339; (b) Eisenwiener, K.-P.; Powell,
€
P.; Macke, H. R. Bioorg. Med. Chem. Lett. 2000, 10,
2133–2135; (c) Gaspar, M.; Grazina, R.; Bodor, A.;
Farkas, E.; Santos, M. A. J. Chem. Soc., Dalton Trans.
1999, 799–806.
16. Adapted procedure for condensation of glyoxal with
cyclam: (a) Le Baccon, M.; Chuburu, F.; Toupet, L.;
ꢁ
9. For example: (a) Halfen, J. A.; Young, V. G. Chem.
Commun. 2003, 2894–2895; (b) Dischino, D. D.; Delaney,
E. J.; Emswiler, J. E.; Gaughan, G. T.; Praud, J. S.;
Srivastava, S. K.; Tweedle, M. F. Inorg. Chem. 1991, 30,
Handel, H.; Soibinet, M.; Dechampes-Olivier, I.; Barbier,
J.-P.; Aplincort, M. New J. Chem. 2001, 25, 1168–1174; (b)
Spectroscopic data for cis-2-(4-nitrobenzyl)decahydro-
3a,5a,8a,10a-tetraazapyrene 7: Integration of the 1H
NMR spectrum indicates that two diastereoisomers are
present in approx. 1:1 ratio; 1H NMR (400 MHz,
CD2Cl2): d 8.09 (d, J ¼ 8:8 Hz, 2H, ArH), 8.08 (d,
J ¼ 8:8 Hz, ArH), 7.27 (d, J ¼ 8:8 Hz, 2H, ArH), 7.22
(d, J ¼ 8:8 Hz, 2H, ArH), 3.35–1.50 (2m, 21H · 2, CH2-a-
N · 8, CH2-c-N · 1, CH · 2), 1.30–1.00 (2m, 2H · 2, CH2-
b-N); 13C NMR [100 MHz, (CD3)2SO2]: d 150.04 (ArC),
148.28 (ArC), 145.94 (ArC), 145.82 (ArC), 130.08 (ArCH),
130.03 (ArCH), 123.46 (ArCH), 123.39 (ArCH), 77.12
(CH), 76.51 (CH), 76.48 (CH), 76.34 (CH), 61.08 (br,
CH2-a-N), 57.97 (br, CH2-a-N), 55.56 (br, CH2-a-N),
53.81 (br, CH2-a-N), 53.69 (br, CH2-a-N), 52.02 (br, CH2-
a-N), 45.26 (br, CH2-a-N), 44.32 (br, CH2-a-N), 40.58
(CH2-c-N), 37.31 (CH2-c-N), 36.08 (CH-b-N), 30.12 (CH-
ꢁ
1265–1269; (c) Brandes, S.; Gros, C.; Denat, F.; Pullumbi,
P.; Guilard, R. Bull. Soc. Chim. Fr. 1996, 133, 65–73.
10. For example: (a) Boschetti, F.; Denat, F.; Espinosa, E.;
Guilard, R. Chem. Commun. 2002, 312–313; (b) Tripier,
R.; Chuburu, F.; Le Baccon, M.; Handel, H. Tetrahedron
2003, 59, 4573–4579; (c) Tripier, R.; Legrange, J. M.;
Espinosa, E.; Denat, F.; Guilard, R. Chem. Commun.
2001, 2728–2729.
11. All chiral compounds were isolated as racemic mixtures.
12. Yields given are those obtained in our laboratory, and are
consistent with those reported: (a) Moreau, P.; Tinkl, M.;
Tsukazaki, M.; Bury, P. S.; Griffen, E. J.; Sniekus, V.;
Maharajh, R. B.; Kwon, C. S.; Somayajii, V. V.; Peng, Z.;
Sykes, T. R.; Noujaim, A. A. Synthesis 1996, 1010–1012;
(b) Valu, K. K.; Gourdie, T. A.; Boritzki, T. J.; Gravatt,
L.; Baguley, B. C.; Wilson, W. R.; Wakelin, P. G.;
Woodgate, P. D.; Denny, W. A. J. Med. Chem. 1990, 33,
3014–3019; (c) Diamantini, G.; Duranti, E.; Tontini, A.
Synthesis 1993, 1104–1108.
1
1
b-N), 19.65( CH2-b-N), 19.48 (CH2-b-N); H COSY, H–
13C HETCOR, 13C DEPT and variable temperature
experiments were used to make resonance assignments;
HR ESMSꢀ m=z: calcd for C19H27H5O2 356.2092
[(MꢀH)ꢀ]; found 356.2088.
13. Spectroscopic data for cis-10b,10c-dimethyl-2-(4-nitro-
1H
17. Efforts to compare reactivity of 7a and 7b are in
progress.
benzyl)decahydro-3a,5a,8a,10a-tetraazapyrene
3: