G Model
PHYTOL 825 1–4
4
G. Chen et al. / Phytochemistry Letters xxx (2014) xxx–xxx
206
207
208
209
210
211
212
213
214
215
216
217
HPLC (mobile phase: 55% acetonitrile; flow rate: 1.5 mL/min) to
yield metabolite 1 (8.6 mg). Fraction C was purified using semi-
preparative HPLC (mobile phase: 60% methanol; flow rate: 3.0 mL/
min) to afford metabolite 2 (11.4 mg). Purification of fraction D by
semi-preparative HPLC with 64% acetonitrile as mobile phase and
flow rate of 2.0 mL/minyielded compounds 3 (10.2 mg), 4 (9.8 mg),
and 5 (7.5 mg). Fraction E was purified by semi-preparative HPLC
with 80% methanol as mobile phase and flow rate of 1.5 mL/min led
to 6 (9.3 mg), 7 (8.9 mg), 8 (12.3 mg), and 9 (10.5 mg). Fraction F was
further subjected to semi-preparative HPLC with 68% acetonitrile as
mobile phaseand flow rateof1.5 mL/minyielded to10(14.4 mg), 11
(5.7 mg), 12 (9.3 mg), and 13 (6.8 mg).
Acknowledgements
257
We thank the National Natural Science Foundation of China (No. Q5 258
81102327) and Innovation Project of Jiangsu Graduate Education
(YKC14059) for funding toward this research.
259
260
References
261
Bhatti, H.-N., Khera, R.-A., 2014. Biotransformations of diterpenoids and triterpe-
noids: a review. J. Asian Nat. Prod. Res. 16, 70–104.
Chen, G.-T., Yang, M., Lu, Z.-Q., Zhang, J.-Q., Huang, H.-L., Liang, Y., Guan, S.-H., Wu,
L.-J., Guo, D.-A., 2007. Microbial transformation of 20(S)-protopanaxatriol-type
saponins by Absidia coerulea. J. Nat. Prod. 70, 1203–1206.
Chen, G.-T., Yang, M., Song, Y., Lu, Z.-Q., Zhang, J.-Q., Huang, H.-L., Wu, L.-J., Guo, D.-
A., 2008. Microbial transformation of ginsenoside Rb1 by Acremonium strictum.
Appl. Microbiol. Biotechnol. 77, 1345–1350.
Chen, G.-T., Yang, X., Li, J.-L., Ge, H.-J., Song, Y., Ren, J., 2013a. Biotransformation of
20(S)-protopanaxadiol by Aspergillus niger AS 3.1858. Fitoterapia 91, 256–260.
Chen, G.-T., Yang, X., Nong, S.-J., Yang, M., Xu, B.-H., Zhang, W., 2013b. Two novel
hydroperoxylated products of 20(S)-protopanaxadiol produced by Mucor race-
mosus and their cytotoxic activities against human prostate cancer cells.
Biotechnol. Lett. 35, 439–443.
Chen, G.-T., Yang, X., Zhai, X.-G., Yang, M., 2013c. Microbial transformation of 20(S)-
protopanaxatriol by Absidia corymbifera and their cytotoxic activitiesagainst
two human prostate cancer cell lines. Biotechnol. Lett. 35, 91–95.
Deng, S., Zhang, B.-J., Wang, C.-Y., Tian, Y., Yao, J.H., An, L., Huang, S.-S., Peng, J.-Y.,
Liu, K.-X., Ma, X.-C., 2012. Microbial transformation of deoxyandrographolide
and their inhibitory activity on LP-induced NO production in RAW 264.7 macro-
phages. Bioorg. Med. Chem. Lett. 22, 1615–1618.
Hasegawa, H., Suzuki, R., Nagaoka, T., Tezuka, Y., Kadota, S., Saiki, I., 2002. Preven-
tion of growth and metastasis of murine melanoma through enhanced natural-
killer cytotoxicity by fatty acid-conjugate of protopanaxatriol. Biol. Pharm. Bull.
25, 861–866.
He, C.-Y., Zhou, D.-D., Li, J., Han, H., Ji, G., Yang, L., Wang, Z.-T., 2014. Identification of
20(S)-protopanaxatriol metabolites in rats by ultra-performance liquid chro-
matography coupled with electrospray ionization quadrupole time-of-flight
tandem mass spectrometry and nuclear magnetic resonance spectroscopy. J.
Pharmacent. Biomed. 88, 497–508.
Hsu, B.-Y., Lu, T.-J., Chen, C.-H., Wang, S.-J., Hwang, L.-S., 2013. Biotransformation of
ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi
(Ganoderma lucidum). Food Chem. 141, 4186–4193.
Li, F.-Y., Cang, P.-R., Huang, S.-S., Zhang, B.-J., Xin, X.-L., Yao, J.-H., Zhou, Q., Tian, Y.,
Deng, S., Ma, X.-C., 2011. Microbial transformation of deoxyandrographolide by
Cunninghamella echinulata. J. Mol. Catal. B: Enzym. 68, 187–191.
Lv, X., Liu, D., Hou, J., Dong, P.-P., Zhan, L.-B., Wang, L., Deng, S., Wang, C.-Y., Yao, J.-H.,
Shu, X.-H., Liu, K.-X., Ma, X.-C., 2013. Biotransformation of imperatorin by
Penicilium janthinellum. Anti-osteporosis activities of its metabolites. Food
Chem. 138, 2260–2266.
Jia, L., Zhao, Y.-Q., Liang, X.-J., 2009. Current evaluation of the millennium phyto-
medicine-ginseng (ii): collected chemical entities, modern pharmacology, and
clinical applications emanated from traditional Chinese medicine. Curr. Med.
Chem. 16, 2924–2942.
Muffler, K., Leipold, D., Scheller, M.-C., Haas, C., Steingroewer, J., Bley, T., Neuhaus,
H.-E., Mirata, M.-A., Schrader, J., Ulber, R., 2011. Biotransformation of triter-
penes. Process Biochem. 46, 1–15.
Parra, A., Rivas, F., Garcia-Granados, A., Martinez, A., 2009. Microbial transformation
of triterpenoids. Mini-Rev. Org. Chem. 6, 307–320.
Popovich, D.-G., Kitts, D.-D., 2002. Structure-function relationship exists for ginse-
nosides in reducing cell proliferation and inducing apoptosis in the human
leukemia (THP-1) cell line. Arch. Biochem. Biophys. 406, 1–8.
Popovich, D.-G., Kitts, D.-D., 2004. Mechanistic studies on protopanaxadiol, Rh2, and
ginseng (Panax quinquefolius) extract induced cytotoxicity in intestinal Caco-2
cells. J. Biochem. Mol. Toxicol. 18, 143–149.
Shibata, S.-J., 2001. Chemistry and cancer preventing activities of ginseng saponins
and some related triterpenoid compounds. J. Korean Med. Sci. 16, S28–S37.
Surh, Y.-H., Na, H.-K., Lee, J.-Y., Keum, Y.-S., 2001. Molecular mechanisms underlying
anti-tumor promoting activities of heat-processed Panax ginseng C. A. Meyer. J.
Korean Med. Sci. 16, 38–41.
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
218
219
220
221
222
3.5.1. 24-Methylene-20(S)-protopanaxatriol (3)
White amorphous powder, m.p. 152–154 8C,
½
a 2D2
+48.38
ꢁ
(c = 0.1, MeOH). 1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3,
125 MHz) see Tables 1 and 2. HRESIMS [M+Na]+ m/z 513.3927
(calcd. for C31H54O4Na, 513.3920).
223
224
225
226
227
3.5.2. 12-oxo-11a-hydroxy-20(S)-protopanaxatriol (11)
Colorless powder, m.p. 137–139 8C, ½a D22
ꢁ
+46.58 (c = 0.1, MeOH).
1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz) see
Tables 1 and 2. HRESIMS [M+Na]+ m/z 513.3558 (calcd. for
C30H50O5Na, 513.3556).
228
229
230
231
232
233
3.5.3. (20S,24S)-epoxy-3b,6a,25-trihydroxy-dammarane-12-one
(13)
Colorless powder, m.p. 127–129 8C, ½a D22
ꢁ
+38.68 (c = 0.1, MeOH).
1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz) see
Tables 1 and 2. HRESIMS [M+Na]+ m/z 513.3553 (calcd. for
C30H50O5Na, 513.3556).
234
3.6. Bioassay
235
236
237
238
239
240
241
242
243
244
245
Seven cancer cell lines, Du-145, Hela, K562, K562/ADR, SH-SY5Y,
HepG2, MCF-7 and one normal cell line Vero, were maintained in
RPMI1640mediumorDMEM,supplementedwith10%(v/v)neonatal
bovine serum or 10% fetal bovine serum. The culture was maintained
at 37 8C, 5% CO2 and grown in 96-wellmicrotiter plates for the assay.
All media weresupplemented with 100 U/mL penicillin and 100
mg/
mL streptomycin. The survival rates of the cancer cells were
evaluated by the MTT method. Cytotoxicities were determined as
IC50 values, namely, the concentrationof test compounds required to
provide 50% inhibition of cell growth. The results were expressed as
the mean value of triplicate determinations.
246
4. Conclusions
247
248
249
250
251
252
253
254
The incubation of PPT with A. niger AS 3.1858 yielded thirteen
products in total, including three new compounds. The enzymatic
reactions included dehydrogenation, hydroxylation, and side-
chain. In addition, we found a new methylene reaction which has
never been reported in the biotransformation of dammarane-type
compounds. Thus, biotransformation is a potent approach to
diversify the structures of natural products and preparing a variety
of derivatives for the search of new lead compounds.
Tian, Y., Guo, H.-Z., Han, J., Guo, D.-A., 2005. Microbial transformation 20(S)-
protopanaxatriol by Mucor spinosus. J. Nat. Prod. 68, 678–680.
Zhou, Z.-W., Ma, C., Zhang, H.-Y., Bi, Y., Chen, X., Tian, H., Xie, X.-N., Meng, Q.-G., Lewis,
P.-J., Xu, J.-Y., 2013. Synthesis and biological evaluation of novel ocotillol-type
triterpenoid derivatives as antibacterial agents. Eur. J. Med. Chem. 68, 444–453.
Zhang, J., Guo,H.-Z.,Tian, Y., Liu,P., Li, N., Zhou,J.-P.,Guo,D.-A.,2007. Biotransformation
of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity
relationships of the transformed products. Phytochemistry 68, 2523–2530.
255 Q4 Uncited references
256 He et al. (2014), Tian et al. (2005) and Zhang et al. (2007).
Please cite this article in press as: Chen, G., et al., Biotransformation of 20(S)-protopanaxatriol by Aspergillus niger and the cytotoxicity of