S. Yu et al. / Tetrahedron Letters 50 (2009) 5575–5577
5577
Table 2
Hydroformylation of 1,5-hexadiene using ligand L2–L7 under optimized pressure and temperaturea
Entry
L
Yield (%)
Olefin isomerb (%)
Monoaldehydes
Dialdehydes 3+4+5 (3/4/5)e
1+2 (1/2)c
6–9d
1
2
3
4
5
6
L2
L3
L4
L5
L6
L7
<1
<1
<1
<1
<1
<1
8.0 (96.2/3.6)
4.6 (96.8/3.2)
8.3 (95.9/4.1)
8.9 (94.9/5.1)
8.0 (97.4/2.6)
11.1 (95.0/5.0)
8.7
17.9
12.1
10.5
8.7
82.1 (97.5/2.2/0.3)
76.9 (98.1/1.7/0.2)
78 (98.3/1.4/0.3)
79.1 (97.7/2.0/0.3)
81.7 (96.8/2.9/0.3)
67.8 (96.7/3.0/0.3)
16.9
a
S/C = 1,000, Rh/L = 4/1, [Rh] = 1.0 mM, 100 °C, H2/CO = 40/40 atm, t = 2 h, conversion >99%, toluene as solvent, decane as internal standard.
See Table 1.
b–e
K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horuichi, T.; Takaya, H. J. Am.
Chem. Soc. 1997, 119, 4413–4423; (c) Cuny, G. D.; Buchwald, S. L. Synlett 1995,
519–522; (d) Becker, Y.; Eisenstadt, A.; Stille, J. K. J. Org. Chem. 1980, 45, 2145.
5. Morikawa, M. Bull. Chem. Soc. Jpn. 1964, 37, 379–380.
6. Kranemann, C. L.; Bärfacker, L.; Eilbracht, P. Eur. J. Org. Chem. 1999, 1907–1914.
7. Eilbracht, P.; Bärfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.;
Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A. Chem. Rev. 1999, 99,
3329–3365.
Acknowledgments
We thank the National Institutes of Health (GM58832) and Dow
Chemical Inc. for financial support.
References and notes
8. (a) Yamamoto, H.; Tanisho, H.; Ohara, S.; Nishida, A. Int. J. Biol. Macromol. 1992,
14, 66–72; (b) Draye, J. P.; Delaey, B.; Van de Voorde, A.; Van den Bulke, A.;
Bogdano, E. Biomaterials 1998, 19, 99; (c) Knaul, J. Z.; Hudson, S. M.; Creber, K.
A. M. J. Polym. Sci. Part B, Polym. 1999, 37, 1079–1094.
1. (a) Ungvary, F. Coord. Chem. Rev. 2005, 249, 2946–2961; (b) Clarke, M. L. Curr.
Org. Chem. 2005, 9, 701–718; (c) Dieguez, M.; Pamies, O.; Claver, C. Tetrahedron:
Asymmetry 2004, 15, 2113–2122; (d) Breit, B. Synthesis 2001, 1–36.
9. Crescenzi, V.; Paradossi, G.; Desideri, P.; Dentini, M.; Cavalieri, F.; Amici, E.; Lisi,
R. Polym. Gel. Network 1997, 5, 225–239.
2. (a) Pino, P.; Piacenti, F.; Bianchi, M. In Organic Syntheses via Metal Carbonyls;
Wender, I., Pino, P., Eds.; Wiley: New York, 1977; (b) Cornils, B. In New
Syntheses with Carbon Monoxide; Falbe, J., Ed.; Springer: Berlin, 1980; pp 1–225;
(c) Kohlpaintner, C. W.; Frohning, C. D. In Applied Homogeneous Catalysis with
Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH: Weinheim,
1996; Vol. 1, pp 1–39; (d)Rhodium Catalyzed Hydroformylation; Claver, C., van
Leeuwen, P. W. N. M., Eds.; Kluwer: Dordrecht, 2000.
3. (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Organometallics 1995, 14, 3081–3089; (b) van Rooy, A.; Goubitz, K.;
Fraanje, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L.
Organometallics 1996, 15, 835–847; (c) Broussard, M. E.; Juma, B.; Train, S. G.;
Peng, W. J.; Laneman, S. A.; Stanley, G. G. Science 1993, 260, 1784–1788; (d) van
der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed.
1999, 38, 336–338; (e) van der Veen, L. A.; Keeven, P. H.; Schoemaker, G. C.;
Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Lutz, M.; Spek, A. L.
Organometallics 2000, 19, 872–883.
4. For vinyl acetate, see: (a) Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.;
Schwartz, G. J.; Wills, M. Angew. Chem. 2000, 112, 4272–4274; Angew. Chem. Int.
Ed. 2000, 39, 4106–4108; (b) Doyle, M. P.; Shanklin, M. S.; Zlokazov, M. V.
Synlett 1994, 615–616. For vinyl or allyl ether, see: (a) Lazzaroni, R.; Bertozzi,
S.; Pocai, P.; Troiani, F.; Salvadori, P. J. Organomet. Chem. 1985, 295, 371–376;
(b) Polo, A.; Claver, C.; Castillón, S.; Rulz, A.; Bayón, J. C.; Real, J.; Mealli, C.; Masi,
D. Organometallics 1992, 11, 3525–3533; (c) Baber, R. A.; Clarke, M. L.; Orpen, A.
G.; Ratcliffe, D. A. J. Organomet. Chem. 2003, 667, 112–119; (d) Horiuchi, T.;
Ohta, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285–
4292; (e) Polo, A.; Claver, C.; Castillon, S.; Ruiz, A.; Bayon, J. C.; Real, J.; Mealli,
C.; Masi, D. Organometallics 1992, 11, 3525–3533. For allyl cyanide, see: (a)
Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-
Gerosa, A. J. Org. Chem. 2004, 69, 4031–4040; (b) Lambers-Verstappen, M. M.
H.; deVries, J. G. Adv. Synth. Catal. 2003, 345, 478–482. For allyl and homoallyl
alcohol, see: (a) Bhatt, K. N.; Halligudi, S. B.; J. Mol. Catal. 1994, 91, 187–194; (b)
Grünanger, C. U.; Breit, B. Angew. Chem. 2008, 120, 7456–7459; Angew. Chem.
Int. Ed. 2008, 47, 7346–7349; For N-vinyl or homoallyl amide derivatives, see:
(a) Gladiali, S.; Pinna, L. Tetrahedron: Asymmetry 1991, 2, 623–632; (b) Nozaki,
10. Hansen, E. W.; Holm, K. H.; Stori, A. Polymer 1997, 38, 4863–4871.
11. (a) Fujita, S.-i.; Fujisawa, S.; Bhanage, B. M.; Arai, M. Tetrahedron Lett. 2004, 45,
1307–1310; (b) Fujita, S.-i.; Fujisawa, S.; Bhanage, B. M.; Ikushima, Y.; Arai, M.
Eur. J. Org. Chem. 2004, 2881–2887; (c) Trzeciak, A. M.; Ziólkowski, J. J. J.
Organomet. Chem. 1994, 464, 107–111; (d) Trzeciak, A. M.; Ziólkowski, J.;
Choukroun, R. J. Mol. Catal. A: Chem. 1996, 110, 135–139.
12. Botteghi, C.; Negri, C. D.; Paganelli, S.; Marchetti, M. J. Mol. Chem. A: Chem. 2001,
175, 17–25.
13. (a) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 16058–16061; (b)
Yu, S.; Chie, Y.; Guan, Z.; Zhang, X. Org. Lett. 2008, 10, 3469–3472; (c) Yu, S.;
Chie, Y.; Guan, Z.; Zou, Y.; Li, W.; Zhang, X. Org. Lett. 2009, 11, 241–244; (d) Yu,
S.; Chie, Y.; Zhang, X. Adv. Synth. Catal. 2009, 351, 537–540.
14. For the synthesis and application of other kinds of multidentate ligands, see:
(a) Evrard, D.; Lucas, D.; Mugnier, Y.; Meunier, P.; Hierso, J.-C. Organometallics
2008, 27, 2643–2653; (b) Hierso, J.-C.; Beaupérin, M.; Meunier, P. Eur. J. Inorg.
Chem. 2007, 3767–3780; (c) Hierso, J.-C.; Smaliy, R. V.; Amardeil, R.; Meunier,
P. Chem. Soc. Rev. 2007, 36, 1754–1769; (d) Hierso, J.-C.; Amardeil, R.; Bentabet,
E.; Broussier, R.; Gautheron, B.; Meunier, P.; Kalck, P. Coord. Chem. Rev. 2003,
236, 143–206.
15. van der Slot, S. C.; Duran, J.; Luten, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Organometallics 2002, 21, 3873–3883.
16. Experimental: A 2-mL vial with a magnetic stirring bar was charged with
ligand L1 (4
lmol, 3.6 mg) and Rh(acac)(CO)2 (1 lmol, 0.1 mL of 10 mM
solution in toluene). The mixture was stirred for 5 min, 1,5-
hexadiene(1.0 mmol, 0.12 mL) was then added, followed by decane (0.1 mL)
as internal standard and toluene (0.68 mL). The reaction mixture was
transferred to an autoclave. The autoclave was purged with nitrogen three
times and subsequently charged with CO (40 atm) and H2 (40 atm). The
autoclave was then heated to 100 °C and the pressure was set to 80 atm. After
2 h, the autoclave was cooled in icy water, and the pressure was carefully
released in a well-ventilated hood. The reaction mixture was immediately
analyzed by GC to determine the conversion and regioselectivity.