Edge Article
Chemical Science
capable of producing reactive Au(III)-intermediates. This process is
inuenced by both the nature of the ancillary ligand on gold and
by the presence of other reaction partners which can shi this up-
hill equilibria. Oxidation is also an energetically demanding
process which translates into a Au(III)-intermediate, whose reac-
tivity will be ne-tuned by the nature of the anionic ligands
transferred by the oxidant: while acetato ligands favor activation
of the arene and are easily displaced to give the cross-coupling
products, chlorides are much less reactive and thus stabilize these
species favoring transmetalation processes. We believe that this
mechanistic study supporting Au(I)/Au(III) redox catalytic cycles
provides novel insights, useful not only for the development of
new gold catalyzed oxidative transformations but also for the
improvement and ne tuning of already available ones.
6 (a) J. P. Brand, J. Charpentier and J. Waser, Angew. Chem., Int.
Ed., 2009, 48, 9346–9349; (b) J. P. Brand and J. Waser, Angew.
Chem., Int. Ed., 2010, 49, 7304–7307; (c) J. P. Brand,
C. Chevalley and J. Waser, Beilstein J. Org. Chem., 2011, 7,
565–569; (d) J. P. Brand, C. Chevalley, R. Scopelliti and
J. Waser, Chem.–Eur. J., 2012, 18, 5655–5666; (e) Y. Li,
J. P. Brand and J. Waser, Angew. Chem., Int. Ed., 2013, 52,
6743–6747; (f) Y. Li and J. Waser, Beilstein J. Org. Chem.,
2013, 9, 1763; (g) J. P. Brand, Y. Li and J. Waser, Isr. J.
Chem., 2013, 53, 901–910.
7 T. de Haro and C. Nevado, J. Am. Chem. Soc., 2010, 132, 1512–
1513.
8 For a Au-catalyzed tandem allenoate cyclization/alkynylation
protocol with Selectuor as the oxidant, see:
M. N. Hopkinson, J. E. Ross, G. T. Giuffredi, A. D. Gee and
V. Governeur, Org. Lett., 2010, 12, 4904–4907.
Conflicts of interest
9 Y. Fuchita, Y. Utsonomiya and M. Yasutake, J. Chem. Soc.,
Dalton Trans., 2001, 2330–2334.
There are no conicts to declare.
10 (a) V. V. Zhdankin, ARKIVOC, 2009, 1; (b) R. M. Moriarty, Org.
Chem., 2005, 70, 2893–2903; (c) J. P. Brand, D. Fernandez
Gonzalez, S. Nicolai and J. Waser, Chem. Commun., 2011,
Acknowledgements
We thank the European Research Council (ERC Starting grant
agreement no. 307948) and the Swiss National Science Foun-
dation (SNF 200020_146853) for nancial support and the SGI/
47, 102–115. For a seminal example of Au(I)/Au(III)
involving hypervalent iodine reagents, see: A. Kar,
N. Mangu, H. M. Kaiser, M. Beller and M. K. Tse, Chem.
Commun., 2008, 386–388.
¨
IZO-SGIker UPV/EHU and Schrodinger (UZH) for allocation of
computational resources. We thank Dr A. Linden for the X-ray 11 (a) N. R. Deprez and M. Sanford, Inorg. Chem., 2007, 46,
crystal structure determination of 10 (CCDC-1008765).†
1924–1935; (b) P. A. Sibbald and F. E. Michael, Org. Lett.,
2009, 11, 1147–1149; (c) T. Furuya, D. Benitez,
E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard III and
T. Ritter, J. Am. Chem. Soc., 2010, 132, 3793–3801; (d)
P. Sehnal, R. J. K. Taylor and I. J. S. Fairlamb, Chem. Rev.,
2010, 110, 824–889.
Notes and references
1 (a) P. J. Garatt, in Comprehensive Organic Synthesis, ed. B. M.
Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 3, p. 271;
(b) Acetylene Chemistry: Chemistry, Biology and Material 12 (a) M. S. Kharasch and H. S. Isbell, J. Am. Chem. Soc., 1931,
Science, ed. F. Diederich, P. J. Stang and R. R. Tykwinski,
Wiley-VCH, Weinheim, 2005.
2 (a) Metal-Catalyzed Cross-Coupling Reactions, ed. A. de
Meijere and F. Diederich, Wiley-VCH, Weinheim, 2nd edn,
2004, vol. 1, p. 2; (b) R. Chinchilla and C. Najera, Chem.
Rev., 2007, 107, 874–922.
53, 3053–3059; (b) K. S. Liddle and C. Parkin, J. Chem. Soc.,
Chem. Commun., 1972, 26; (c) P. W. J. deGraaf, J. Boersma
and G. J. M. Van der Kerk, J. Organomet. Chem., 1976, 105,
399–406; (d) K. A. Porter, A. Schier and H. Schmidbaur,
Organometallics, 2003, 22, 4922–4927.
13 For seminal contributions on Au(I)/Au(III) manifolds, see: (a)
A. S. K. Hashmi, T. D. Ramamurthi and F. Rominger, J.
Organomet. Chem., 2009, 694, 592–597; (b) L. Cui, G. Zhang
and L. Zhang, Bioorg. Med. Chem. Lett., 2009, 19, 3884–
3887; (c) G. Zhang, Y. Peng, L. Cui and L. Zhang, Angew.
Chem., Int. Ed., 2009, 48, 3112–3115; (d) A. Iglesias and
3 For recent reviews in C–H arylation, see: (a) Modern Arylation
Methods, ed. L. Ackermann, Wiley-VCH, Weinheim,
Germany, 2009, p. 311; (b) R. Giri, B.-F. Shi, K.-M. Engle,
N. Maugel and J.-Q. Yu, Chem. Soc. Rev., 2009, 38, 3242–
3272; (c) O. Daugulis, H.-Q. Do and D. Shabashov, Acc.
Chem. Res., 2009, 42, 1074; (d) J. Roger, A. L. Gottumukkala
and H. Doucet, ChemCatChem, 2010, 2, 20–40.
4 (a) F. Besselievre and S. Piguel, Angew. Chem., Int. Ed., 2009,
48, 9553–9556; (b) Z. Shao and F. Peng, Angew. Chem., Int.
Ed., 2010, 49, 9566–9568; (c) A. S. Dudnik and
V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2096–2098;
(d) N. Matsuyama, M. Kitahara, K. Hirano, T. Satoh and
M. Miura, Org. Lett., 2010, 12, 2358–2361; (e) B. Pacheco
Berciano, S. Lebrequier, F. Besselievre and S. Piguel, Org.
Lett., 2010, 12, 4038–4041; (f) C. Theunissen and G. Evano,
Org. Lett., 2014, 16, 4488–4491.
˜
K. Muniz, Chem.–Eur. J., 2009, 15, 10563–10569; (e)
M. N. Hopkinson, A. Tessier, A. Salisbury, G. T. Giufredi,
L. E. Combettes, A. D. Gee and V. Gouverneur, Chem.–Eur.
J., 2010, 16, 4739–4744; (f) G. Zhang, L. Cui, Y. Wang and
L. Zhang, J. Am. Chem. Soc., 2010, 132, 1474–1475; (g)
W. E. Brenzovich, J.-F. Brazeau and F. D. Toste, Org. Lett.,
2010, 12, 4728–4731; (h) L. T. Ball, M. Green, G. C. Lloyd-
Jones and C. A. Russell, Org. Lett., 2010, 12, 4724–4727; (i)
A. D. Melhado, W. E. Brenzovich, A. D. Lackner and
F. D. Toste, J. Am. Chem. Soc., 2010, 132, 8885–8887; (j)
T. de Haro and C. Nevado, Angew. Chem., Int. Ed., 2011, 50,
906–910; (k) L. T. Ball, G. C. Lloyd-Jones and C. A. Russell,
Science, 2012, 337, 1644–1648; (l) C. X. Cambeiro,
5 Y. Wei, H. Zhao, J. Kan, W. Su and M. Hong, J. Am. Chem.
Soc., 2010, 132, 2522–2523.
This journal is © The Royal Society of Chemistry 2019
Chem. Sci.