Angewandte
Chemie
HSQC spectra were recorded in the absence and presence of
compound (see Figure S16 and S17 in the Supporting
Information). Upon addition of 64, crosspeaks in the 1H-
15N-HSQC spectrum both shifted and decreased in volume,
thus indicating direct interaction between the compound and
Mcl-1. These chemical shifts were mapped onto the structure
of Mcl-1 using a recently published NMR assignment.[51] The
analysis suggests 64 binds in the BH3 binding cleft of Mcl-1, as
shown by significant movement of the crosspeaks for Phe270
and Arg263 along peptide binding site. Similar results were
obtained for 67 (see Figure S18–20 in the Supporting Infor-
mation). Finally we probed the ability of the trimers to bind
Mcl-1 and Bcl-xL in cells using the biotintylated trimers and
streptavidin pull-down on cell lysate from U2OS and Saos-2
cell lines. In all cases biotinylated trimers were capable of
pulling down Mcl-1 from cell lysate (the pull-down bands for
biotin/64 and biotin/67 were both more intense than the other
compounds reflecting their greater potency). We observe no
evidence of Bcl-xL pull-down, thus indicating that the
selectivity observed in the biophysical assay is replicated in
the cellular environment. Full, un-cropped gel images are
available in the Supporting Information (Figure S21)
[6] L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z.
Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi,
[7] M. Bruncko, T. K. Oost, B. A. Belli, H. Ding, M. K. Joseph, A.
Kunzer, D. Martineau, W. J. McClellan, M. Mitten, S.-C. Ng,
P. M. Nimmer, T. Oltersdorf, C.-M. Park, A. M. Petros, A. R.
Shoemaker, X. Song, X. Wang, M. D. Wendt, H. Zhang, S. W.
[8] S. Shangary, D. Qin, D. McEachern, M. Liu, R. S. Miller, S. Qiu,
Z. Nikolovska-Coleska, K. Ding, G. Wang, J. Chen, D. Bernard,
J. Zhang, Y. Lu, Q. Gu, R. B. Shah, K. J. Pienta, X. Ling, S. Kang,
[10] V. Azzarito, K. Long, N. S. Murphy, A. J. Wilson, Nat. Chem.
[11] L. Nevola, A. Martꢁn-Quirꢂs, K. Eckelt, N. Camarero, S. Tosi, A.
In conclusion, we have described the design, synthesis, and
testing of a library of N-alkylated helix mimetics. Whilst some
correlation between biophysical and cellular potency is
evident, the results reveal the interplay between the two is
complex, and emphasize the need to perform multiple
analyses on libraries of helix mimetics in order to a) identify
(and ultimately select for) desirable structure function
behavior and b) to understand strengths and areas for further
development (e.g. off target effects) of a-helix mimetics as
PPI inhibitors. For instance, 31 is a reasonable inhibitor of the
p53/hDM2 interaction in the FA screen, but does not score
highly for induction of apoptosis or cell viability. Similarly, 23
reduced cell viability and acts as an inhibitor of p53/hDM2 in
the FA experiment but only reduced cell number in the HCS
to a limited extent. Most significantly, the proteomimetics 64
and 67 were active in all three experiments, and shown to bind
endogenous hDM2 and elicit the downstream effects of p53
function. Moreover 64 and 67 were shown to act in a potent
and selective manner on Mcl-1/NOXA-B over Bcl-xL/BH3 in
both biophysical assays and a cellular context—a selectivity
profile which is challenging to achieve. Thus the results
establish that these helix mimetics can reproduce their
binding selectivity in cells, whilst dual inhibition of hDM2
and Mcl-1 may also represent a novel approach for elabo-
ration of anticancer chemotherapeutics.
[12] J. Spiegel, P. M. Cromm, A. Itzen, R. S. Goody, T. N. Grossmann,
[13] R. W. Cheloha, A. Maeda, T. Dean, T. J. Gardella, S. H. Gell-
[14] E. F. Lee, J. D. Sadowsky, B. J. Smith, P. E. Czabotar, K. J.
Peterson-Kaufman, P. M. Colman, S. H. Gellman, W. D. Fairlie,
[19] B. B. Lao, K. Drew, D. A. Guarracino, T. F. Brewer, D. W.
´
[20] G. Schꢃfer, J. Milic, A. Eldahshan, F. Gçtz, K. Zꢄhlke, C.
Schillinger, A. Kreuchwig, J. M. Elkins, K. R. Abdul Azeez, A.
Oder, M. C. Moutty, N. Masada, M. Beerbaum, B. Schlegel, S.
Niquet, P. Schmieder, G. Krause, J. P. von Kries, D. M. F.
Cooper, S. Knapp, J. Rademann, W. Rosenthal, E. Klussmann,
[21] I. Saraogi, J. A. Hebda, J. Becerril, L. A. Estroff, A. D. Miranker,
[22] L. Gonzꢅlez-Bulnes, I. IbꢅÇez, L. M. Bedoya, M. Beltrꢅn, S.
[23] B. B. Lao, I. Grishagin, H. Mesallati, T. F. Brewer, B. Z.
[24] G. M. Burslem, H. F. Kyle, A. L. Breeze, T. A. Edwards, A.
[25] H. Yin, G.-I. Lee, H. S. Park, G. A. Payne, J. M. Rodriguez, S. M.
Received: November 6, 2014
Revised: December 15, 2014
Published online: && &&, &&&&
Keywords: apoptosis · foldamers · helical structures ·
.
peptidomimetics · protein–protein interactions
[1] L.-G. Milroy, T. N. Grossmann, S. Hennig, L. Brunsveld, C.
[2] M. P. H. Stumpf, T. Thorne, E. de Silva, R. Stewart, H. J. An, M.
[26] A. Kazi, J. Sun, K. Doi, S.-S. Sung, Y. Takahashi, H. Yin, J. M.
Rodriguez, J. Becerril, N. Berndt, A. D. Hamilton, H.-G. Wang,
Angew. Chem. Int. Ed. 2015, 54, 1 – 7
ꢀ 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
These are not the final page numbers!