The Journal of Physical Chemistry A
Article
(6) Veloo, P. S.; Wang, Y. L.; Egolfopoulos, F. N.; Westbrook, C. K.
Combust. Flame 2010, 157, 1989−2004.
APPENDIX
■
Estimation of the High-Pressure-Limit Rate Constant for
the Decomposition of C4H9O Radical Isomers
(7) Black, G.; Curran, H. J.; Simmie, J. M.; Zhukov, V. Combust.
Flame 2010, 157, 363−373.
The high-pressure limit of the rate constants for reactions 9a,
10a, 10b, 11a, 12a, and 13 describing β-scission decomposition
were estimated on the basis of the reverse addition reaction,
described by Curran30 for similar decomposition reactions of
alkyl and alkoxy radicals. The rate constants for the addition
reactions can be estimated by assuming that addition reactions
with similar molecular interactions have equivalent reaction
rate constants. For example, the reverse of reaction 10a is the
addition of an OH radical with a 1-butene molecule, and
the rate constant for such a reaction can be estimated to be
equivalent to the addition reaction of an OH radical with a
propene molecule to form a hydroxypropyl radical product.
The rate constants for the latter reaction and other classes of
addition reactions can be determined from applying the law of
mass action to the work of Zador and Miller,22 who performed
ab initio calculations on the unimolecular pathways for the
decomposition of hydroxypropyl radicals. We made the
assumption that the rate constants calculated at 100 bar are
representative of the high-pressure limiting rate constant.
Thermodynamic properties were taken from Sarathy et al.12 in
our calculations. Table 5 presents the families of addition
reactions and the rate constants assumed for each as
determined from the work of Zador and Miller with the
thermodynamic properties from Sarathy et al.
(8) Grana, R.; Frassoldati, A.; Faravelli, T.; Niemann, U.; Ranzi, E.;
Seiser, R.; Cattolica, R.; Seshadri, K. Combust. Flame 2010, 157, 2137−
2154.
(9) Harper, M. R.; Geem, K. M. V.; Pyl, S. P.; Marin, G. B.; Green,
W. H. Combust. Flame 2011, 158, 16−41.
(10) Cook, R. D.; Davidson, D. F.; Hanson, R. K. Int. J. Chem. Kinet.
2012, DOI: 10.1002/kin.20713.
(11) Vranckx, S.; Heufer, K. A.; Lee, C.; Olivier, H.; Schill, L.; Kopp,
W. A.; Leonhard, K.; Taatjes, C. A.; Fernandes, R. X. Combust. Flame
2011, 158, 1444−1455.
(12) Sarathy, S. M.; Vranckx, S.; Yasunaga, K.; Mehl, M.; Osswald, P.;
Westbrook, C. K.; Pitz, W. J.; Kohse-Hoinghaus, K.; Fernandes, R. X.;
̈
Curran, H. J. Submitted for publication to Combust. Flame, 2011.
(13) Ranzi, E.; Dente, M.; Faravelli, T.; Pennati, G. Combust. Sci.
Technol. 1994, 95, 1−50.
́
(14) Galano, A.; Alvarez-Idaboy, J. R.; Bravo-Perez, G.; Ruiz-Santoyo,
M. E. Phys. Chem. Chem. Phys. 2002, 4, 4648−4662.
(15) Vasu, S. S.; Davidson, D. F.; Hanson, R. K.; Golden, D. M.
Chem. Phys. Lett. 2010, 497, 26−29.
(16) Zhou, C.-W.; Simmie, J. M.; Curran, H. J. Combust. Flame 2011,
158, 726−731.
(17) Pang, G. A.; Hanson, R. K.; Golden, D. M.; Bowman, C. T. Z.
Phys. Chem. 2011, 225, 1157−1178.
(18) Geem, K. M. V.; Pyl, S. P.; Marin, G. B.; Harper, M. R.; Green,
W. H. Ind. Eng. Chem. Res. 2010, 49, 10399−10420.
(19) Herbon, J. T.; Hanson, R. K.; Golden, D. M.; Bowman, C. T.
Proc. Combust. Inst. 2002, 29, 1201−1208.
(20) Sirjean, B.;et al. A high-temperature chemical kinetic model of
n-alkane oxidation. JetSurF version 1.0; September 15, 2009; http://
(21) Ritter, E. R.; Bozzelli, J. W. Int. J. Chem. Kinet. 1991, 23, 797−
778.
ASSOCIATED CONTENT
* Supporting Information
Raw data of the OH concentration time history measurements
are provided at 0.2 MHz for each data point in Tables S1 and
S2. This information is available free of charge via the Internet
■
S
́
(22) Zador, J.; Miller, J. A. Proc. U.S. Natl. Technical Mtg. Combust.
Inst., 7th 2011, 1, 483−488.
(23) Zheng, J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2010, 12,
7782−7793.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(24) Xu, X.; Papajak, E.; Truhlar, D. G. Phys. Chem. Chem. Phys.
2012, DOI: 10.1039/C2CP23692C.
(25) Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S.
J.; Harding, L. B.; Ruscic, B. J. Phys. Chem. A 2010, 114, 9425−9439.
(26) Klippenstein, S. J. Personal communication.
(27) Senosian, J. P.; Klippenstein, S. J.; Miller, J. A. J. Phys. Chem. A
2006, 110, 6960−6970.
(28) Miller, J. A.; Klippenstein, S. J. Phys. Chem. Chem. Phys. 2004, 6,
1192−1202.
(29) Benson, S. W. The Foundations of Chemical Kinetics; McGraw-
Hill Book Co., Inc.: New York, 1960.
(30) Curran, H. Int. J. Chem. Kinet. 2006, 38, 250−275.
(31) Zhang, P.; Klippenstein, S. J.; Law, C. K. Fall Technical Meeting
of the Eastern States Section of the Combustion Institute; 2011.
(32) Zhang, P. Personal communication.
(33) Vasudevan, V. Shock tube measurements of elementary
oxidation and decomposition reactions important in combustion
using OH, CH and NCN laser absorption. Ph.D. thesis, Stanford
University Mechanical Engineering Department, 2007.
(34) Benson, S. W.; O’Neal, H. E. NSRDS-NBS 1970, 21, 438.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge helpful discussions with Robert
Cook, Dr. David Davidson, Prof. Alessio Frassoldati,
Dr. Stephen Klippenstein, Dr. Bill Pitz, Dr. Mani Sarathy, Ivo
Stranic, Prof. Donald Truhlar, Dr. Judit Zador, and Dr. Peng
Zhang. This work was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, with Dr. Wade Sisk as
contract monitor, and the Combustion Energy Frontier
Research Center funded by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award
Number DE-SC0001198.
REFERENCES
(1) Hess, G. Chem. Eng. News 2006, 84, 9.
(2) Dagaut, P.; Togbe,
(3) Dagaut, P.; Sarathy, S. M.; Thomson, M. J. Proc. Combust. Inst.
■
́
C. Fuel 2008, 87, 3313−3321.
2009, 32, 229−237.
(4) Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A.; Biet, J.;
Warth, V.; Glaude, P.-A.; Battin-Leclerc, F. J. Phys. Chem. A 2008, 112,
10843−10855.
(5) Sarathy, S. M.; Thomson, M. J.; Togbe,
Mounaim-Russelle, C. Combust. Flame 2009, 156, 852−864.
́
C.; Dagaut, P.; Halter, F.;
2483
dx.doi.org/10.1021/jp211885p | J. Phys. Chem. A 2012, 116, 2475−2483