ˇ
G. Stefanic´ et al. / Journal of Alloys and Compounds 388 (2005) 126–137
136
from the measurements of the unit-cell volume. In case of the
products with molar fraction of aluminium above 10 mol%,
the second explanation proposed by Balmer et al. [34] seems
to be more realistic. SEM images of the crystallization
product with a ratio Zr/Al = 1 indicate the presence of only
one type of grains. No sign of the significant amount of
amorphous phase, required to compensate the difference in
the aluminium content between 10 and 50 mol% could be
found.
References
[1] I. Clark, D.H. Reynolds, Ind. Eng. Chem. 29 (1937) 711–715.
ˇ
[2] G. Stefanic´, S. Music´, Croat. Chem. Acta 75 (2002) 727–767.
ˇ
[3] G. Stefanic´, S. Music´, S. Sekulic´, Thermochim. Acta 273 (1996)
119–133.
[4] A. Larbot, T. Hours, P. Bergez, J. Charpin, L. Cot, J. Non-Cryst.
Solids 147/148 (1992) 85–91.
[5] L.-M. Tau, R. Srinivasan, R.J. De Angelis, T. Pinder, B.H. Davis, J.
Mater. Res. 3 (3) (1988) 561–562.
[6] R. Srinivasan, B.H. Davis, J. Am. Ceram. Soc. 73 (6) (1990)
1780–1782.
ˇ
[7] G. Stefanic´, S. Music´, Thermochim. Acta 373 (2001) 59–67.
ˇ
[8] G. Stefanic´, B. Grzˇeta, K. Nomura, R. Trojko, S. Music´, J. Alloys
Compd. 327 (2001) 151–160.
4. Conclusion
[9] S.M. Ho, Mater. Sci. Eng. 54 (1982) 23–29.
[10] D.-J. Kim, J. Am. Ceram. Soc. 72 (1989) 1415–1421.
[11] D.-J. Kim, S.-H. Hyun, S.-G. Kim, M. Yashima, J. Am. Ceram. Soc.
77 (1994) 597–599.
[12] M. Yashima, H. Takahashi, K. Ohtake, T. Hirose, M. Kakihana, H.
Arashi, Y. Ikuma, Y. Suzuki, M. Yoshimura, J. Phys. Chem. Solids
157 (1996) 289–295.
[13] M. Yashima, N. Ishizawa, M. Yoshimura, J. Am. Ceram. Soc. 75
(1992) 1541.
[14] M.F. Trubelja, V.S. Stubican, Solid State Ionics 49 (1991) 89–
97.
The results of the DTA showed that the crystallization tem-
perature of the amorphous precursors of the HfO2–AlO1.5
and ZrO2–AlO1.5 systems increased with increasing AlO1.5
content, from 530 ◦C (0 mol% AlO1.5) to 940 ◦C (60 mol%
AlO1.5) and from 405 ◦C (0 mol% AlO1.5 to 915 ◦C (60 mol%
AlO1.5), respectively. These results indicated that in this con-
centration range amorphous precursors exist in the form of
a co-gel. The results of phase analysis obtained using XRD,
laser Raman spectroscopy and SEM/EDX showed only the
presence of HfO2- and ZrO2-type solid solutions in the crys-
tallization products with AlO1.5 contents ≤50 mol%. These
results suggested an extended capability for the formation of
solid solutions in these metastable phases. However, precise
measurement of unit-cell parameters shows that an increase
of the aluminium content above 10 mol% has a very small
influence on the unit-cell volume of the HfO2- or ZrO2-type
solid solutions. Such results could not be explained by the
standard model of cation substitution and random distribution
of oxygen vacancies due to the significantly smaller radius of
[15] V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques,
J. Solid State Electrochem. 4 (2000) 243–266.
[16] C.J. Howard, R.J. Hill, B.E. Reichert, Acta Crystallogr. Sect. B 44
(1988) 116–120.
[17] P. Li, I.-W. Chen, J.E. Penner-Hahn, J. Am. Ceram. Soc. 77 (1994)
118–128.
ˇ
[18] S. Popovic´, B. Grzˇeta, G. Stefanic´, I. Cako´-Nagy, S. Music´, J. Alloys
Compd. 241 (1996) 10–15.
ˇ
[19] S. Popovic´, G. Stefanic´, S. Music´, Mater. Lett. 31 (1997) 19–
22.
ˇ
[20] G. Stefanic´, S. Popovic´, S. Music´, Mater. Lett. 36 (1998) 240–
244.
[21] S. Davison, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem.
73 (1988) 47–51.
Al3+ ion (0.54 A) compared to the radii of Hf (0.83 A) and
4+
˚
˚
[22] F.J. Berry, M.H. Loretto, M.R. Smith, J. Solid State Chem. 83 (1989)
Zr4+ (0.84 A) ions. It was concluded that solid solutions with
˚
random distributions of oxygen vacancies exist only in the
products with molar fractions of aluminium below 10 mol%.
In case of the products with molar fractions of aluminium
above 10 mol%, the model proposed by Balmer et al. [34],
which assume the existence of aluminium-rich clusters as dis-
ordered regions within the individual crystallites or on their
surfaces, seems to be the most realistic. The appearance of
such clusters in the products with aluminium contents above
10 mol% is probably the reason why only the tetragonal poly-
morph of hafnia and zirconia could be stabilized. Although
the results of whole-powder-pattern decomposition indicated
stabilization of the cubic polymorphs of HfO2 and ZrO2 in
the products with AlO1.5 content ≥10 mol% (axial ratio cf/af
approach (1), Raman spectra of those crystallization products
contained all six Raman active modes of vibration, typical for
the tetragonal polymorphs of HfO2 and ZrO2. The tetragonal
symmetry of these samples can be attributed to the displace-
ment of oxygen sub-lattice from the ideal fluorite positions.
On the other side of the concentration range the solubility of
Zr4+ and Hf4+ ions in the aluminium oxides lattice appeared
to be negligible.
[23] I.B. Inwang, F. Chyad, I.J. McColm, J. Mater. Chem. 5 (1995)
1209–1213.
[24] G. Stefanic´, B. Grzˇeta, S. Music´, Mater. Chem. Phys. 65 (2000)
ˇ
216.
[25] O. Yamaguchi, M. Shirai, M. Yoshinaka, J. Am. Ceram. Soc. 71
(1988) C-510–C-512.
[26] K. Ishida, K. Hirota, O. Yamaguchi, H. Kume, S. Inamura, H.
Miyamoto, J. Am. Ceram. Soc. (1994) 77.
[27] W. Zhang, E.E. lachowski, F.P. Glasser, J. Mater. Sci. 28 (1993)
6222–6232.
[28] J.S. Hong, S.D. De la Torre, K. Miyamoto, H. Miyamoto, L. Gao,
Mater. Lett. 37 (1998) 6–9.
[29] A. Mondal, S. Ram, Solid State Ionics 160 (2003) 169–181.
[30] S. Kikkawa, A. Kijima, K. Hirota, O. Yamamoto, J. Am. Ceram.
Soc. 85 (2002) 721–723.
[31] S. Moreau, M. Gervais, A. Douy, Solid State Ionics 101–103 (1997)
625–631.
[32] M.L. Balmer, F.F. Lange, C.G. Levi, J. Am. Ceram. Soc. 77 (1994)
2069–2075.
[33] M.L. Balmer, F.F. Lange, V. Jayaram, C.G. Levi, J. Am. Ceram. Soc.
78 (1995) 1489–1494.
[34] M.L. Balmer, H. Eckert, N. Das, F.F. Lange, J. Am. Ceram. Soc. 79
(1996) 321–326.
[35] M. Yoshimura, S.-T. Oh, M. Sando, K. Niihara, J. Alloys Compd.
290 (1999) 284–289.