A. Perzyna et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2363–2365
2365
3. Kobayashi, J.; Cheng, J. F.; Nakamura, H.; Ohizumi, Y.;
Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. Tetrahedron
Lett. 1988, 29, 1177.
4. Utsugi, T.; Aoyagi, K.; Asao, T.; Okazaki, S.; Aoyagi, Y.;
Sano, M.; Wierzba, K.; Yamada, Y. Jpn. J. Cancer Res.
1997, 88, 992.
MCF7 cell line of 10c,d with 11c,d revealed that a me-
thyl substituent on position 13 is better than an ethyl
one as in Irinotecan. Analogue 10c with a hydroxyl
group on the indole pattern is more active than those
with a piperidine side chain (10e) or a methoxy group
(10d). Moreover, it seems that a group acting as a
hydrogen bond donor and acceptor is essential on the
indole pattern, as indicated by the better activity of 10c
(bearing a hydroxyl group) compared to 10e (with a
piperidine side chain) and to 10d (bearing a methoxy
group). If the piperidine side chain on the quinoline
moiety is important for cytotoxic activity, a methyl
substituent is better than an ethyl one, probably due to
the lack of water solubility or to steric constraint.
Position 8 is best substituted by a hydroxyl group,
hydrogen bond donor and acceptor.
5. Jonckers, T. H. M.; van Miert, S.; Cimanga, K.; Bailly, C.;
Colson, P.; De Pauw-Gillet, M.-C.; van Den Heuvel, H.;
ꢁ
Claeys, M.; Lemiere, F.; Esmans, E. L.; Rozenski, J.;
Quirijnen, L.; Maes, L.; Dommisse, R.; Lemiere, G. L. F.;
ꢁ
Vlietinck, A.; Pieters, L. J. Med. Chem. 2002, 45, 3497.
6. Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Bora-
tynski, J. J. Med. Chem. 1994, 37, 3503.
7. Bush, J. A.; Long, B. H.; Catino, J. J.; Bradner, W. T.;
Tomita, K. J. Antibiot. (Tokyo) 1987, 40, 668.
8. Leteurtre, F.; Sackett, D. L.; Madalengoitia, J.; Kohlha-
gen, G.; MacDonald, T.; Hamel, E.; Paull, K. D.;
Pommier, Y. Biochem. Pharmacol. 1995, 49, 1283.
9. Maulard, C.; Urien, S.; Bastian, G.; Tillement, J.-P.
Biochem. Pharmacol. 1990, 40, 895.
10. Thomas, D. W.; Biemann, K. Tetrahedron 1968, 24, 4223.
11. Klinke, P.; Gibian, H. Chem. Ber. 1961, 94, 2 6.
12. Bird, T. G. C.; Bruneau, P.; Crawley, G. C.; Edwards, M.
P.; Foster, S. J.; Girodeau, J. M.; Kingston, J. F.;
McMillan, R. M. J. Med. Chem. 1991, 34, 2176.
We have therefore demonstrated that the benzo[5,6]-
pyrrolizino[1,2-b]quinoline skeleton exhibits cytotoxicity
in the micromolar range against several cancer cell lines.
Our data indicates that this original polycyclic structure,
which is quite linear, induces good cytotoxicity. Studies
directed to identifying the mode of biological action of
these analogues are underway.
13. Remers, W. A.; Weiss, M. J. J. Med. Chem. 1965, 8, 700.
ꢀ
14. Chackal, S.; Houssin, R.; Henichart, J.-P. J. Org. Chem.
2002, 67, 3502.
15. Cytotoxic assay: Leukemic L1210 cells were maintained in
RPMI 1640 culture medium supplemented with 10% FCS.
For growth assay, the cells were seeded onto 24-well plates
at a density approximatively 105 cells/well. The tested
compounds were added to the culture medium and
incubation was performed for 72h. Cell growth was
assessed by numeration on Nageotte hemacytometer.
16. Cytotoxic assay: Human breast cancer MCF7 and pros-
tate cancer PC3 cells were, respectively, maintained in
MEM and RPMI culture medium supplemented with 10%
FCS. For growth assay, the cells were seeded onto 24-well
plates at a density of, respectively, 3 · 105 cells/well and
2 · 105 cells/well. After 24 h, the tested compounds were
added to the culture medium for 72h. Cell growth was
assessed by the colorimetric MTT test.
Acknowledgements
This work was partly supported by the ÔAssociation
pour la Recherche sur le CancerÕ (Grant no 4287).
References and notes
1. Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.;
McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88,
3888.
2. Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y. J. Hetero-
cycles 1997, 46, 541.
ꢀ
17. Perzyna, A.; Marty, C.; Facompre, M.; Goossens, J.-F.;
Pommery, N.; Colson, P.; Houssier, C.; Houssin, R.;
ꢀ
Henichart, J.-P.; Bailly, C. J. Med. Chem. 2002, 45, 5809.