3666
K. Maekawa et al. / Tetrahedron Letters 45 (2004) 3663–3667
hν
Electron transfer (ET)
Back ET
Ar
(Z)-1
(E)-1
(Z)-1*
(E)-1*
(Z)-1 TEA
(Z)-1 /TEA
TEA
Ar
TEA
NH
hν
ET
O
NH
O
TEA
O
O
OR1
TEA
OR1
TEA
H
TEA
H
N
H
OR1
H
OR1
O
OR1
Ar
Ar
OR1
Ar
Back ET
N
N
Ar
O
N
H shift
O
O
O
O
O
O
H
H
H
H
cis-2
trans-2
I
II
Scheme 2.
3. Hoshina, H.; Kubo, K.; Morita, A.; Sakurai, T. Tetrahe-
dron 2000, 56, 2941–2951.
4. Hoshina, H.; Tsuru, H.; Kubo, K.; Igarashi, T.; Sakurai,
T. Heterocycles 2000, 53, 2261–2274.
5. (a) Kubo, K.; Ishii, Y.; Sakurai, T.; Makino, M. Tetra-
hedron Lett. 1998, 39, 4083–4086; (b) Maekawa, K.;
Igarashi, T.; Kubo, K.; Sakurai, T. Tetrahedron 2001, 57,
5515–5526; (c) Motohashi, T.; Maekawa, K.; Kubo, K.;
Igarashi, T.; Sakurai, T. Heterocycles 2002, 57, 269–292.
6. (a) Rao, Y. S.; Filler, R. Synthesis 1975, 749–764; (b)
Rzeszotarska, B.; Karolak-Wojciechowska, J.; Broda, M.
A.; Galdecki, Z.; Trzezwinska, B.; Koziol, A. E. Int. J.
Pept. Protein Res. 1994, 44, 313–319;
that electrostatic attraction between the anion radical I
and the TEA cation radical, as well as hydrogen bond-
ing solvation of I (by methanol) and II (by methanol
and TEA), renders an electron transfer-initiated
cyclization a kinetically-controlled process. Since elec-
trostatic and hydrogen bonding interactions in the
cis-configurations may undergo less steric hindrance,
hydrogen shift from cis-II should be accelerated to a
much greater extent, as compared to that from trans-II,
resulting in a preferential formation of the cis-isomers.
Although there are several synthetic routes to dihydro-
oxazole derivatives, no convenient photochemical route
to these derivatives is known.12 The procedure for pre-
paring the starting a-dehydroamino acids (Z)-1a–g is
very simple and easily applicable to their related com-
pounds. The photoinduced electron transfer reaction
of (Z)-N-(4-substituted benzoyl)-a-dehydroarylalanine
alkyl esters described above, therefore, constitutes a
novel photochemical method for the construction of a
dihydrooxazole ring.
Data for (Z)-1a. Mp 118.0–118.5 °C. IR (KBr): 3200,
1
1732, 1632 cmꢁ1. H NMR (600 MHz, DMSO-d6): d 3.80
(3H, s), 7.46 (2H, dd, J ¼ 7:6, 7.6 Hz), 7.51 (1H, dd,
J ¼ 7:6, 8.9 Hz), 7.55 (1H, dd, J ¼ 7:6, 7.6 Hz), 7.58 (1H,
dd, J ¼ 6:9, 6.9 Hz), 7.59 (1H, dd, J ¼ 6:9, 7.6 Hz), 7.69
(1H, d, J ¼ 7:6 Hz), 7.84 (2H, d, J ¼ 7:6 Hz), 7.90 (1H, s),
7.94 (1H, d, J ¼ 8:9 Hz), 7.97 (1H, d, J ¼ 6:9 Hz), 8.05
(1H, d, J ¼ 7:6 Hz), 10.0 (1H, s). 13C NMR (150 MHz,
DMSO-d6) d 52.3, 124.1, 125.4, 126.2, 126.62, 126.65,
127.6 (2C), 128.3 (2C), 128.5, 128.9, 129.2, 129.9, 130.5,
131.0, 131.8, 133.15, 133.22, 165.3, 166.4. Anal. Calcd
(found) for C21H17NO3: C, 76.12 (75.88); H, 5.17 (4.98);
N, 4.23% (4.19%).
7. Data for (E)-1a. Mp 156.0–157.0 °C. IR (KBr): 3240,
1
1736, 1632 cmꢁ1. H NMR (600 MHz, DMSO-d6): d 3.47
Acknowledgements
(3H, s), 7.32 (1H, d, J ¼ 7:4 Hz), 7.34 (1H, s), 7.49 (1H,
dd, J ¼ 7:4, 8.0 Hz), 7.55–7.61 (2H, m), 7.57 (2H, dd,
J ¼ 7:4, 8.6 Hz), 7.64 (1H, dd, J ¼ 7:4, 7.4 Hz), 7.90 (1H,
d, J ¼ 8:0 Hz), 7.95–7.98 (1H, m), 8.00 (2H, d,
J ¼ 8:6 Hz), 8.02–8.04 (1H, m), 10.7 (1H, s). 13C NMR
(150 MHz, DMSO-d6) d 51.7, 120.0, 124.3, 125.5, 125.7,
126.2, 126.5, 127.8 (2C), 128.1, 128.5, 128.6 (2C), 131.0,
131.1, 131.6, 132.2, 132.8, 133.1, 165.09, 165.10. Anal.
Calcd (found) for C21H17NO3: C, 76.12 (76.02); H, 5.17
(5.26); N, 4.23% (4.09%).
This research was partially supported by a ‘High-Tech
Research Project’ from the Ministry of Education,
Sports, Culture, Science and Technology, Japan.
References and notes
1. Mariano, P. S.; Stavinoha, J. L. In Synthetic Organic
Photochemistry; Horspool, W. M., Ed.; Plenum: New
York, 1984; pp 145–257.
2. (a) Lewis, F. D.; Bassani, D. M.; Reddy, G. D. J. Org.
Chem. 1993, 58, 6390–6393; (b) Lewis, F. D.; Reddy, G.
D.; Bassani, D. M.; Schneider, S.; Gahr, M. J. Am. Chem.
Soc. 1994, 116, 597–605; (c) Lewis, F. D.; Bassani, D. M.;
Burch, E. L.; Cohen, B. E.; Engleman, J. A.; Reddy, G.
D.; Schneider, S.; Jaeger, W.; Gedeck, P.; Gahr, M. J. Am.
Chem. Soc. 1995, 117, 660–669.
Data for cis-2a. Mp 133.0–134.0 °C. IR (KBr): 1742,
1646 cmꢁ1 1H NMR (600 MHz, DMSO-d6): d 2.72 (3H,
.
s), 5.62 (1H, d, J ¼ 10:3 Hz), 6.88 (1H, d, J ¼ 10:3 Hz),
7.51–7.52 (2H, m), 7.57 (1H, dd, J ¼ 7:4, 7.4 Hz), 7.59
(2H, dd, J ¼ 7:4, 7.7 Hz), 7.60 (1H, dd, J ¼ 7:4, 8.7 Hz),
7.67 (1H, dd, J ¼ 7:4, 7.4 Hz), 7.90–7.92 (1H, m), 7.96
(1H, d, J ¼ 7:4 Hz), 8.08 (2H, d, J ¼ 7:7 Hz), 8.10 (1H, d,
J ¼ 8:7 Hz). 13C NMR (150 MHz, DMSO-d6) d 50.7, 72.7,
80.0, 122.9, 123.6, 125.1, 125.9, 126.2, 126.4, 128.2 (2C),
128.3, 128.4, 128.9 (2C), 129.7, 132.0, 132.3, 132.8, 165.2,