S. Comesse et al. / Tetrahedron Letters 45 (2004) 3807–3809
3809
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2,
p 1007.
References and notes
7. (a) Agami, C.; Comesse, S.; Kadouri-Puchot, C.; Lusinchi,
M. Synlett 1999, 1094; (b) Agami, C.; Comesse, S.;
Kadouri-Puchot, C. J. Org. Chem. 2002, 67, 1496.
8. (a) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org.
Chem. 2000, 65, 4435; (b) Agami, C.; Comesse, S.;
Kadouri-Puchot, C. J. Org. Chem. 2002, 67, 2424.
1. (a) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry
1997, 8, 1895; (b) Bloch, R. Chem. Rev. 1998, 98, 1407.
2. For a review on the homoallylamine synthesis, see:
Puentes, C. O.; Kouznetsov, V. J. Heterocycl. Chem.
2002, 39, 595.
3. For recent reports on asymmetric syntheses of homoallylic
amines: (a) van der Sluis, M.; Dalmolen, J.; de Lange, B.;
Kaptein, B.; Kellog, R. M.; Broxterman, Q. B. Org. Lett.
2001, 3, 3943; (b) Schaus, J. V.; Jain, N.; Panek, J. S.
Tetrahedron 2000, 56, 10263; (c) Yanada, R.; Okaniwa,
M.; Kaieda, A.; Ibuka, T.; Takemoto, Y. J. Org. Chem.
2001, 66, 1283; (d) Koriyama, Y.; Nozawa, A.; Hayakawa,
R.; Shimizu, M. Tetrahedron 2002, 58, 9621; (e) Schleus-
ner, M.; Gais, H.-J.; Koep, S.; Raabe, G. J. Am. Chem.
Soc. 2002, 124, 7789; (f) Lebouvier, N.; Laroche, C.;
Huguenot, F.; Brigaud, T. Tetrahedron Lett. 2002, 43,
2827; (g) Hamada, T.; Manabe, K.; Kobayashi, S. Angew.
Chem., Int. Ed. 2003, 42, 3927.
4. For the synthesis of silylated unsaturated amines in a
racemic form, see: (a) Leboutet, L.; Courtois, G.;
Miginiac, L. J. Organomet. Chem. 1991, 420, 155; (b)
Yang, T.-K.; Teng, T.-F.; Lin, J.-H.; Lay, Y.-Y. Tetrahe-
dron Lett. 1994, 35, 3581; (c) Overman, L. E.; Malone,
T. C.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6993; (d)
Breternitz, H.-J.; Schaumann, E. J. Chem. Soc., Perkin
Trans. 1 1999, 1927; (e) Nikam, S. S.; Wang, K. K. J. Org.
Chem. 1985, 50, 2193; (f) Kang, K.-T.; Kim, E. H.; Kim,
W. J.; Song, N. S.; Shin, J. K.; Cho, B. Y. Synlett 1998,
ꢀ
9. Agami, C.; Comesse, S.; Guesne, S.; Kadouri-Puchot, C.;
Martinon, L. Synlett 2003, 1058.
10. Chang, Z.-Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3475.
11. Mokhallalati, M. K.; Pridgen, L. N. Synth. Commun.
1993, 23, 2055.
12. Van der Sluis, M.; Broxterman, Q. B.; De Lange, B. PTC
Int. Appl. No 2001090048, 29 November 2001.
13. Procedure for obtaining compound 13: Lead tetraacetate
(1.8 g, 4 mmol) was added to stirred, cooled (0 ꢁC) absolute
methanol (41 mL). To this cooled yellow solution was
added over 10 min a solution of amino alcohol 3c (1 g,
3.13 mmol) in CH2Cl2 (21 mL). After stirring for another
30 min at 0 ꢁC, the mixture was diluted with dichloro-
methane (20 mL) and stirred for 2 min. The mixture was
then quenched with a 10% aqueous sodium carbonate
solution (25 mL) and the organic layer was separated. The
aqueous layer was extracted with dichloromethane
(2 · 10 mL) and the organic layers were combined, dried
over MgSO4 and evaporated under reduced pressure. The
corresponding imine was treated directly in the next step.
Phenylhydrazine (0.3 mL, 3 mmol) was added to a solution
of imine (0.818 g, 2.84 mmol) in n-hexane (27 mL). The
solution was stirred at room temperature under argon
during 24 h. The resulting mixture was filtered through a
pad of Celite 545ꢂ, and washed with n-hexane and the
filtrate was evaporated very carefully without warming,
under reduced pressure. The crude amine 8c (0.57 g,
2.84 mmol) was directly treated with di-tertio-butyldicar-
bonate (0.682 g, 3.12 mmol.) in AcOEt (15 mL). The
mixture was stirred for 1 h 30 min and the solvent was
evaporated. The crude residue was chromatographed to
afford compound 13 as a solid (AcOEt/PE: 2/98). Yield:
ꢀ
921; (g) Dobbs, A. P.; Guesne, S. J. J.; Hursthouse, M. B.;
Coles, S. J. Synlett 2003, 1740; (h) Dobbs, A. P.; Guesne,
ꢀ
S. J. J.; Martinovic, S.; Coles, S. J.; Hursthouse, M. B.
J. Org. Chem. 2003, 68, 7880; (i) Furman, B.; Dziedzic, M.
Tetrahedron Lett. 2003, 44, 8249.
5. For the synthesis of silylated unsaturated amines in an
enantioenriched form, see: (a) Daub, G. W.; Heerding,
D. A.; Overman, L. E. Tetrahedron 1988, 44, 3919; (b)
Castro, P.; Overman, L. E.; Zhang, X.; Mariano, P. S.
Tetrahedron Lett. 1993, 34, 5243; (c) Wu, X.-D.; Khim,
S.-K.; Zhang, X.; Cederstrom, E. M.; Mariano, P. S.
J. Org. Chem. 1998, 63, 841; (d) Rutjes, F. P. J. T.;
Veerman, J. J. N.; Meester, W. J. N.; Hiemstra, H.;
Schoemaker, H. E. Eur. J. Org. Chem. 1999, 1127.
20
D
1
70%. Mp: 77 ꢁC. ½aꢀ þ 42 (c 0.7, HCCl3). H NMR: 5.96
(ddd, J ¼ 5:0, 7.5 and 18.5 Hz, 1H), 5.90 (d, J ¼ 18:5 Hz,
1H), 4.19 (d, J ¼ 10 Hz, 1H), 3.49–3.39 (m, 1H), 2.49–2.38
(m, 1H), 1.97–1.85 (m, 1H), 1.38 (s, 9H), 0.86 (s, 9H), 0.05
(s, 9H). 13C NMR: 156.1, 144.4, 132.5, 78.7, 58.3, 38.2,
34.8, 28.6, 26.5, ꢁ1.0. Anal. Calcd For C16H33NO2Si: C,
64.16; H, 11.10; N, 4.68. Found: C, 64.38; H, 11.18; N, 4.45.
6. (a) Blumenkopf, T. A.; Overman, L. A. Chem. Rev. 1986,
86, 857; (b) Overman, L. E.; Ricca, D. J. In Comprehen-
sive Organic Synthesis; Heathcock, C., Trost, B. M.,