10.1002/anie.201909151
Angewandte Chemie International Edition
COMMUNICATION
olefins incorporated into the product with yields up to 42%
(Scheme 4: 4, 30-33). Interestingly, substitution on the 2-position
of the terminal olefin was tolerated to provide azetidine 32 in
moderate yield. These results signify that constructing further
variations in structural diversity of spirocyclic NH-azetidines is
possible via olefin exchange through the Kulinkovich-like
mechanism.
In conclusion, two routes for the Ti-mediated synthesis of
spirocyclic NH-azetidines from oxime ethers were evaluated. In
the first pathway, oxime ethers were converted to NH-azetidines
using primary Grignard reagents while the second pathway
utilized olefin ligand-exchange partners. With these methods a
diverse range of novel, previously unreported spirocyclic NH-
azetidines were prepared in moderate yield through a proposed
Kulinkovich-type mechanism.
Support from Rice University, the National Institutes of Health
(R01 GM-114609-04), the National Science Foundation
(CAREER:SusChEM CHE-1546097), the Robert A. Welch
Foundation (grant C-1764), Amgen (2014 Young Investigators’
Award for LK), Biotage (2015 Young Principal Investigator Award)
and the National Science Foundation Graduate Research
Fellowship (Grant No. 1842494, Award for KL) is greatly
appreciated.
Keywords: Azetidine • Titanium alkoxides • Olefins • Aliphatic
Grignard • Spirocycle
[1]
a) L. Bondada, R. Rondla, U. Pradere, P. Liu, C. W. Li, D. Bobeck,
T. McBrayer, P. Tharnish, J. Courcambeck, P. Halfon, T. Whitaker,
F. Amblard, S. J. Coats, R. F. Schinazi, Bioorg. Med. Chem. Lett.
2013, 23, 6325-6330; b) A. A. Kirichok, I. O. Shton, I. M. Pishel, S.
A. Zozulya, P. O. Borysko, V. Kubyshkin, O. A. Zaporozhets, A. A.
Tolmachev, P. K. Mykhailiuk, Chem. - Eur. J. 2018, 24, 5444-5449.
L. Degennaro, M. Zenzola, A. Laurino, M. M. Cavalluzzi, C.
Franchini, S. Habtemariam, R. Matucci, R. Luisi, G. Lentini, Chem.
Heterocycl. Compd. 2017, 53, 329-334.
[2]
[3]
I. O. Feskov, A. V. Chernykh, Y. O. Kuchkovska, C. G. Daniliuc, I.
S. Kondratov, O. O. Grygorenko, J. Org. Chem. 2019, 84, 1363-
1371.
[4]
[5]
D. Antermite, L. Degennaro, R. Luisi, Org. Biomol. Chem. 2017, 15,
34-50.
J. i. Kobayashi, J.-F. Cheng, M. Ishibashi, M. R. Wälchli, S.
Yamamura, Y. Ohizumi, J. Chem. Soc., Perkin Trans. 1 1991, 1135-
1137.
[6]
[7]
V. Mehra, I. Lumb, A. Anand, V. Kumar, RSC Adv. 2017, 7, 45763-
45783.
A. R. Katritzky, in Comprehensive Heterocyclic Chemistry III, Vol. 2
(Eds.: G. S. Singh, M. D’hooghe, N. De Kimpe), Elsevier Science,
2008, pp. 3-34.
[8]
B. Marc R., R. Alistair D., S. Corinna S., in Functionalized Azetidines
Via Visible Light-Enabled Aza Paternò-Bꢀchi Reactions, 2019 (DOI:
10.26434/chemrxiv.7218272.v3)
Scheme 4. Formation of NH-azetidines from terminal olefins. [a] Terminal olefin
(1.05 mmol), Et2O (0.2 M), oxime (1.0 mmol), and Ti(Oi-Pr)4 (1.0 mmol) were
[9]
[10]
[11]
N. H. Cromwell, B. Phillips, Chem. Rev. 1979, 79, 331-358.
Z. Zhou, L. Kürti, Synlett 2019, 30, 1525-1535.
a) O. G. Kulinkovich, Chem. Rev. 2003, 103, 2597-2632; b) A.
Wolan, Y. Six, Tetrahedron 2010, 66, 15-61.
O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevski, Synthesis-
Stuttgart 1991, 234-234.
a) D. Astashko, H. G. Lee, D. N. Bobrov, J. K. Cha, J. Org. Chem.
2009, 74, 5528-5532; b) V. Chaplinski, A. deMeijere, Angew. Chem.
1996, 35, 413-414; c) O. L. Epstein, A. I. Savchenko, O. G.
Kulinkovich, Tetrahedron Lett. 1999, 40, 5935-5938; d) O. G.
Kulinkovich, A. I. Savchenko, S. V. Sviridov, D. A. Vasilevski,
Mendeleev Commun. 1993, 230-231.
Solid Ti(Oi-Pr)3Cl was observed to readily oxidize in air before
addition to the reaction. Liquid Ti(Oi-Pr)4 did not have this issue.
The observed decomposition product was the primary amine
resulting from ring-opening of the azetidine.
combined in
a dry flask under Ar before the dropwise addition of
Cyclopentylmagnesium bromide (C5H9MgBr, 2.5 equiv) over 5 minutes at room
temperature. Upon consumption of the oxime by TLC, the reaction was
quenched with 15% aqueous citric acid (30 mL) and stirred overnight until
colorless. Workup and purification conditions are identical to those described
for azetidine formation from Grignard reagents in Scheme 1.
[12]
[13]
Acknowledgements
[14]
[15]
We thank Mr. Tobias Wilczek and Mr. Christopher Paasch
(visiting students from the University of Cologne) for technical
assistance with preliminary experiments. Additionally, Priv.-Doz.
Dr. Martin Prechtl (University of Cologne) is recognized for
obtaining DAAD support (Project ID 57386699) for the visiting
students. The authors would also like to thank Mr. Brian Mercer
(Biotage) for helpful discussions regarding purification. Financial
[16]
[17]
O. G. Kulinkovich, A. de Meijere, Chem. Rev. 2000, 100, 2789-2834.
O. Kulinkovich, Eur. J. Org. Chem. 2004, 4517-4529.
This article is protected by copyright. All rights reserved.