stable than the corresponding skipped azaenediynes 2b,c by
12.0 and 7.3 kcal/mol, respectively, supporting the proposed
isomerization. There is only a small predicted energy dif-
ference between the less stable (Z)-imine isomers 3b,c and
the corresponding (E)-isomers (0.1 kcal/mol). Even for the
aldimines 3b,c (X ) N, R′ ) H), the (Z)-isomers required
for cyclization should be thermodynamically accessible, and
in the case of ketimines 3 (X ) N, R′ * H, e.g., 3d), the
reactive imine isomers (corresponding to (Z)-3b,c) should
predominate.
Scheme 1. Previously Reported Heteroenyne Allenes and
Azaenyne Allenes Derived from Skipped Azaenediynes
The results of (U)B3LYP/6-31G* calculations (Table 1)
indicate that the proposed aza-Myers-Saito cyclization of
azaenyne allene 3b has a slightly lower predicted barrier and
is slightly more exothermic than the Myers-Saito cyclization
of 3a. In both cases, the resulting singlet diradical 4••16 is
much lower in energy than the closed-shell singlet zwitterion
4(.17 A non-Cs-symmetric closed-shell singlet 5 lower in
energy than 4( was found for both the Myers-Saito case,
as had been previously noted by Squires18 and Carpenter,19
and the aza-Myers-Saito case.20 These results lead to the
prediction of a facile aza-Myers-Saito cyclization of aza-
enyne allenes that may afford products derived from both
diradical and ionic reaction pathways. The aza-Schmittel
cyclization of 3b is predicted to be much more facile than
the Schmittel cyclization of 3a, and although the aza-Myers-
Saito cyclization is predicted to be favored over aza-Schmittel
cyclization of 3b, the difference between the two pathways
is much smaller than in the enyne allene case.21 In accord
with previous computational studies of the Myers-Saito18,21-23
and Schmittel20,21,23 cyclizations, the transition states TS1b
and TS2b have little diradical character, indicating that
crossing to an open-shell surface occurs after these transition
states.
intermediates (Scheme 1), and 2,4,5-hexatrienenitriles,11
which do not undergo intramolecular thermal cyclization.
The ability of diradical-generating heteroenyne allenes to
participate in DNA cleavage chemistry12 or cascade cycliza-
tion reactions8,9,10,13 provides an impetus to study previously
unexplored members of this class of compounds.
The prototropic rearrangement of “skipped” azaenediynes
2b-d represents a potential route to C-alkynyl- N-allenyl
imines 3b-d, representatives of a class of azaenyne allenes
that have not yet been reported in the literature (Scheme 1).14
Here we report our computational and experimental studies
of the thermal rearrangements of azaenyne allenes 3b-d
derived from rearrangement of skipped azaenediynes
2b-d. We present evidence for an intermediate R,5-dide-
hydro-3-picoline diradical (4d••) derived from 3d and
computational studies that support the observed facility of
this aza-Myers-Saito cyclization and shed further light on
the effect of aza-substitution in this system.
(15) All calculations were carried out with the Guassian 98 package:
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador,
P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B.
B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin,
R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,
A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.
W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople,
J. A. Gaussian 98, Revision A.11.4; Gaussian, Inc.: Pittsburgh, PA, 2002.
(16) Despite a certain lack of theoretical rigor in applying UB3LYP
calculations to these open-shell singlets, we report these values for
comparison with the results in the enyne allene series in refs 2a, 18, and
19. One can reach the same conclusions by comparing the triplet diradical
energies.
(17) For the zwitterion 4a(, we find a structure lower in energy than
that reported in ref 19. We note that the wave function is unstable with
respect to symmetry breaking for both 4( and 5 at the B3LYP level.
(18) Wenthold, P. G.; Wierschke, S. G.; Nash, J. J.; Squires, R. R. J.
Am. Chem. Soc. 1994, 116, 7378-7392.
(19) Hughes, T. S.; Carpenter, B. K. J. Chem. Soc., Perkin Trans. 2 1999,
2291-2298.
(20) In the aza-Myers-Saito case, B3LYP/6-31G* calculations indicate
that 4b( is a saddle point corresponding to the transition state for the
interconversion of the two enantiomeric cyclic allenes 5b.
(21) Musch, P. W.; Remenyi, C.; Helten, H.; Engels, B. J. Am. Chem.
Soc. 2002, 124, 1823-1828.
Density functional calculations at the B3LYP/6-31G*
level15 demonstrate that the azaenyne allenes 3b,c are more
(10) (a) Lu, X.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2002, 67,
7797-7801. (b) Shi, C. S.; Zhang, Q.; Wang, K. K. J. Org. Chem. 1999,
64, 925-932. (c) Alajarin, M.; Molina, P.; Vidal, A. J. Nat. Prod. 1997,
60, 747-748.
(11) Gillmann, T.; Heckhoff, S. Tetrahedron Lett. 1996, 37, 839-840.
(12) Nakatani, K.; Maekawa, S.; Tanabe, K.; Saito, I. J. Am. Chem. Soc.
1995, 117, 10635-44.
(13) (a) Moore, H. W.; Yerxa, B. J. Chemtracts Org. Chem. 1992, 5,
273-313. (b) Schmittel, M.; Rodriguez, D.; Steffen, J.-P. Angew. Chem.,
Int. Ed. 2000, 39, 2152-2155.
(22) Cramer, C. J.; Kormos, B. L.; Seierstad, M.; Sherer, E. C.; Winget,
P. Org. Lett. 2001, 3, 1881-1884.
(23) Schreiner, P. R.; Prall, M. J. Am. Chem. Soc. 1999, 121, 8615-
8627.
(14) For theoretical studies of enyne allenes in which the central double
bond is replaced with various heteroatoms see: Bui, B. H.; Schreiner, P.
R. Org. Lett. 2003, 5, 4871-4874.
2060
Org. Lett., Vol. 6, No. 12, 2004