4474 Biochemistry, Vol. 49, No. 21, 2010
Moore et al.
In contrast, 7-OHRA was not a “normal” metabolite of
CYP3A4. Rather, we propose a highly unusual pathway, in
which raloxifene diquinone methide conjugates with carboxyl
groups of CYP3A4 or nearby proteins to form an ester bond.
Interestingly, this ester bond only forms on the benzothiophene
moiety and not the phenol moiety. Acidic conditions are
required to hydrolyze this ester bond to release 7-OHRA. There-
fore, if 7-OHRA is not produced during the incubation of
raloxifene with CYP3A4, the secondary metabolites (i.e., GS-
OHRA and di-GS-OHRA) are most likely formed by additional
metabolism of 30-OHRA. In support of this rationale, greater
than 99% of the di-GS-OHRA metabolite incorporated oxygen
from molecular oxygen, suggesting it is efficiently formed from
30-OHRA. Unfortunately, due to the lower levels of GS-OHRA
metabolites, we could not determine the source of oxygen in
these metabolites. However, there remains the possibility that
GS-RA is hydroxylated by CYP3A4 to form the GS-OHRA and
di-GS-OHRA products. Additional study is required to deter-
mine the fate of GS-RA and the source of the secondary
metabolites.
In summary, CYP3A4 oxygenates raloxifene to 30-OHRA
and dehydrogenates raloxifene to a reactive diquinone methide.
The reactive species can be trapped by GSH in the form of
thioether conjugates, form adducts with Cys239 and Tyr75 of
CYP3A4, or, in a novel mechanism, conjugate with carboxyl
groups, forming ester conjugates with CYP3A4 or nearby
proteins. Furthermore, these results suggest that the benzothio-
phene moiety, and not the phenol moiety, of raloxifene is the
structural feature responsible for formation of the reactive
species. These findings support the rational design of new
SERMs without the benzothiophene structure to reduce bioac-
tivation liabilities. Other putative heterocyclic functional groups
that could be “structural alerts” include the benzofuran, indole,
and benzimidazole moieties.
8. Swerdlow, A. J., and Jones, M. E. (2005) Tamoxifen treatment for
breast cancer and risk of endometrial cancer: A case-control study.
J. Natl. Cancer Inst. 97, 375–384.
9. Han, X. L., and Liehr, J. G. (1992) Induction of covalent DNA
adducts in rodents by tamoxifen. Cancer Res. 52, 1360–1363.
10. Randerath, K., Moorthy, B., Mabon, N., and Sriram, P. (1994)
Tamoxifen: Evidence by 32P-postlabeling and use of metabolic
inhibitors for two distinct pathways leading to mouse hepatic DNA
adduct formation and identification of 4-hydroxytamoxifen as a
proximate metabolite. Carcinogenesis 15, 2087–2094.
11. Kim, S. Y., Suzuki, N., Laxmi, Y. R., and Shibutani, S. (2004)
Genotoxic mechanism of tamoxifen in developing endometrial
cancer. Drug Metab. Rev. 36, 199–218.
12. Marques, M. M., and Beland, F. A. (1997) Identification of tamoxi-
fen-DNA adducts formed by 4-hydroxytamoxifen quinone methide.
Carcinogenesis 18, 1949–1954.
13. Beland, F. A., McDaniel, L. P., and Marques, M. M. (1999) Compari-
son of the DNA adducts formed by tamoxifen and 4-hydroxytamoxi-
fen in vivo. Carcinogenesis 20, 471–477.
14. Bolton, J. L., Yu, L., and Thatcher, G. R. (2004) Quinoids formed
from estrogens and antiestrogens. Methods Enzymol. 378, 110–123.
15. Jones, C. D., Jevnikar, M. G., Pike, A. J., Peters, M. K., Black, L. J.,
Thompson, A. R., Falcone, J. F., and Clemens, J. A. (1984) Antiestro-
gens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo[b]-
thiophene derivatives leading to [6-hydroxy-2-(4-hydroxyphenyl)-
benzo[b]thien-3-yl] [4-[2-(1-piperidinyl)ethoxy]-phenyl]methanone
hydrochloride (LY156758), a remarkably effective estrogen anta-
gonist with only minimal intrinsic estrogenicity. J. Med. Chem. 27,
1057–1066.
16. Clemett, D., and Spencer, C. M. (2000) Raloxifene: A review of its use
in postmenopausal osteoporosis. Drugs 60, 379–411.
17. DeMichele, A., Troxel, A. B., Berlin, J. A., Weber, A. L., Bunin,
G. R., Turzo, E., Schinnar, R., Burgh, D., Berlin, M., Rubin, S. C.,
Rebbeck, T. R., and Strom, B. L. (2008) Impact of raloxifene or
tamoxifen use on endometrial cancer risk: A population-based
case-control study. J. Clin. Oncol. 26, 4151–4159.
18. Vogel, V. G. (2009) The NSABP study of tamoxifen and raloxifene
(STAR) trial. Expert Rev. Anticancer Ther. 9, 51–60.
19. Wickerham, D. L., Costantino, J. P., Vogel, V. G., Cronin, W. M.,
Cecchini, R. S., Ford, L. G., and Wolmark, N. (2009) The use of
tamoxifen and raloxifene for the prevention of breast cancer. Recent
Results Cancer Res. 181, 113–119.
20. Yu, L., Liu, H., Li, W., Zhang, F., Luckie, C., van Breemen, R. B.,
Thatcher, G. R., and Bolton, J. L. (2004) Oxidation of raloxifene to
quinoids: Potential toxic pathways via a diquinone methide and
o-quinones. Chem. Res. Toxicol. 17, 879–888.
ACKNOWLEDGMENT
21. Chen, Q., Ngui, J. S., Doss, G. A., Wang, R. W., Cai, X., DiNinno,
F. P., Blizzard, T. A., Hammond, M. L., Stearns, R. A., Evans, D. C.,
Baillie, T. A., and Tang, W. (2002) Cytochrome P450 3A4-mediated
bioactivation of raloxifene: Irreversible enzyme inhibition and thiol
adduct formation. Chem. Res. Toxicol. 15, 907–914.
The authors thank Dr. Judy Bolton, University of Illinois,
Chicago, for providing 30-hydroxyraloxifene and 7-hydroxyral-
oxifene for these studies.
22. Liu, J., Li, Q., Yang, X., van Breemen, R. B., Bolton, J. L., and
Thatcher, G. R. (2005) Analysis of protein covalent modification by
xenobiotics using a covert oxidatively activated tag: Raloxifene proof-
of-principle study. Chem. Res. Toxicol. 18, 1485–1496.
23. Baer, B. R., Wienkers, L. C., and Rock, D. A. (2007) Time-dependent
inactivation of P450 3A4 by raloxifene: Identification of Cys239 as the
site of apoprotein alkylation. Chem. Res. Toxicol. 20, 954–964.
24. Pearson, J. T., Wahlstrom, J. L., Dickmann, L. J., Kumar, S., Halpert,
J. R., Wienkers, L. C., Foti, R. S., and Rock, D. A. (2007) Differential
time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene:
A key role for C239 in quenching reactive intermediates. Chem. Res.
Toxicol. 20, 1778–1786.
25. Yukinaga, H., Takami, T., Shioyama, S. H., Tozuka, Z., Masumoto,
H., Okazaki, O., and Sudo, K. (2007) Identification of cytochrome
P450 3A4 modification site with reactive metabolite using linear ion
trap-Fourier transform mass spectrometry. Chem. Res. Toxicol. 20,
1373–1378.
REFERENCES
1. Horner, M. J., Ries, L. A. G., Krapcho, M., Neyman, N., Aminou, R.,
Howlader, N., Altekruse, S. F., Feuer, E. J., Huang, L., Mariotto, A.,
Miller, B. A., Lewis, D. R., Eisner, M. P., Stinchcomb, D. G., and
Edwards, B. K. (2009) SEER Cancer Statistics Review, 1975-2006,
National Cancer Institute, Bethesda, MD.
2. Osborne, C. K. (1998) Tamoxifen in the treatment of breast cancer.
N. Engl. J. Med. 339, 1609–1618.
3. Hortobagyi, G. N. (1998) Treatment of breast cancer. N. Engl. J. Med.
339, 974–984.
4. Fisher, B., Costantino, J. P., Wickerham, D. L., Redmond, C. K.,
Kavanah, M., Cronin, W. M., Vogel, V., Robidoux, A., Dimitrov, N.,
Atkins, J., Daly, M., Wieand, S., Tan-Chiu, E., Ford, L., and
Wolmark, N. (1998) Tamoxifen for prevention of breast cancer:
Report of the National Surgical Adjuvant Breast and Bowel Project
P-1 Study. J. Natl. Cancer Inst. 90, 1371–1388.
26. Liu, H., Qin, Z., Thatcher, G. R., and Bolton, J. L. (2007) Uterine
peroxidase-catalyzed formation of diquinone methides from the
selective estrogen receptor modulators raloxifene and desmethylated
arzoxifene. Chem. Res. Toxicol. 20, 1676–1684.
27. Kemp, D. C., Fan, P. W., and Stevens, J. C. (2002) Characteriza-
tion of raloxifene glucuronidation in vitro: Contribution of intesti-
nal metabolism to presystemic clearance. Drug Metab. Dispos. 30,
694–700.
5. Magriples, U., Naftolin, F., Schwartz, P. E., and Carcangiu, M. L.
(1993) High-grade endometrial carcinoma in tamoxifen-treated breast
cancer patients. J. Clin. Oncol. 11, 485–490.
6. Fisher, B., Costantino, J. P., Redmond, C. K., Fisher, E. R.,
Wickerham, D. L., and Cronin, W. M. (1994) Endometrial cancer
in tamoxifen-treated breast cancer patients: Findings from the Na-
tional Surgical Adjuvant Breast and Bowel Project (NSABP) B-14.
J. Natl. Cancer Inst. 86, 527–537.
7. Curtis, R. E., Boice, J. D., Jr., Shriner, D. A., Hankey, B. F., and
Fraumeni, J. F., Jr. (1996) Second cancers after adjuvant tamoxifen
therapy for breast cancer. J. Natl. Cancer Inst. 88, 832–834.
28. Obach, R. S., Kalgutkar, A. S., Soglia, J. R., and Zhao, S. X. (2008)
Can in vitro metabolism-dependent covalent binding data in liver
microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An