10.1002/cctc.202001876
ChemCatChem
FULL PAPER
with Pt wire as the counter electrode, a glass carbon (GC) electrode (5 mm
in diameter) as the working electrode, and Ag/AgCl (3 M KCl) as the
reference electrode. The catalytic ink was prepared by dispersing 2.5 mg
of the material and 2.5 mg of the cabot Vulcan xc-72 in 500 μL solution
containing 485 μL isopropanol and 15 μL 5% Nafion solution followed by
ultrasonication for 1 h. The above suspension (10 μL) was dropped on to
the GC electrode and dried at room temperature. All potentials were
Sang, Q. Wu, H. Liu, K. Liu, Int. J. Hydrogen Energy 2019, 44, 2656-
2663; h) M. Gong, H. Dai, Nano Research 2015, 8, 23-39; i) W. Li, F. Li,
H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 2019, 10,
5074; j) W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu,
Nat. Energy 2019, 4, 115-122; k) M. P. Browne, Z. Sofer, M. Pumera,
Energ. Environ. Sci. 2019, 12, 41-58; l) D. A. Kuznetsov, B. Han, Y. Yu,
R. R. Rao, J. Hwang, Y. Roman-Leshkov, Y. Shao-Horn, Joule 2018, 2,
225-244; m) V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-
G. Lee, T. Yoon, K. S. Kim, ACS Catal. 2017, 7, 7196-7225; n) J. Qi, W.
Zhang, R. Cao, Chemcatchem 2018, 10, 1206-1220.
referred to the reversible hydrogen electrode (RHE): ERHE = EAg/AgCl
+
0.197 + 0.059 × pH. Linear sweep voltammetry (LSV) was recorded in an
O2-saturated 1.0 M KOH at a scan rate of 10 mV· s-1 to obtain the
polarization curves. The overpotential (η) was calculated according to the
following formula: η = ERHE - 1.23 V. The Tafel slope was obtained from
the LSV curves and Tafel equation. LSV and Tafel data were corrected
for iR compensation. Electrochemical impedance spectroscopy (EIS) was
performed at a frequency ranging from 100 kHz to 0.1 Hz at 1.52 V vs.
RHE with the three-electrode cell system in 1.0 M KOH solution. The
chronopotentiometry was measured at a current density of 10 mA cm-2. To
estimate the electrochemical active surface area (ECSA) of the catalysts,
the electrochemical double layer capacitance (Cdl) was measured via CV
in the non-Faradaic potential range of 0.076 to 0.176 V versus Ag/AgCl
with scan rates from 10-100 mV s-1. The current differences at 0.126 V
against scan rates were fitted to obtain the Cdl: Cdl = Δj / ΔV, where Cdl, Δj
and ΔV are the double-layer capacitance (mF cm-2) of the electroactive
materials, charging current (mA cm-2) and scan rate (mV s-1), respectively.
ESCA = Cdl / Cs, (Cs is the specific capacitance, and the measured value
in the 1.0 M KOH electrolyte solution is 0.040 mF cm-2). Turnover
frequency (TOF) values of catalysts were calculated according to the
following equation: TOF = (J×A)/(4×F×m), where j (mA cm-2) is the current
density during the LSV measurement in 1.0 M KOH, A is the surface area
of the glass carbon electrode (GC, 0.196 cm2), F is the Faraday constant
(96485 C mol-1) and 4 is because the OER is a four electron transfer step,
m is the moles of active sites on the electrode (the value of m can be
calculated from the weight and the molecular weight of the coated
catalysts).
[4]
[5]
Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Nano Today 2017,
15, 26-55.
a) D. D. Qi, X. Chen, W. P. Liu, C. X. Liu, W. B. Liu, K. Wang, J. Z. Jiang,
Inorg. Chem. Front. 2020, 7, 642-646; b) Z. Liao, Y. Wang, Q. Wang, Y.
Cheng, Z. Xiang, Appl. Catal. B-Environ. 2019, 243, 204-211. c) Y. Li, X.
Tao, J. Wei, X. Lv, H.-G. Wang, Chem. Asian J. 2020, 15,1970-1975; d)
A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interface Sci.
2020, 579, 598-606; e) A. Singh, S. Roy, C. Das, D. Samanta, T. K. Maji,
Chem Commun (Camb) 2018, 54, 4465-4468; f) S. Bhunia, K. Bhunia, B.
C. Patra, S. K. Das, D. Pradhan, A. Bhaumik, A. Pradhan, S.
Bhattacharya, ACS Appl Mater Interfaces 2019, 11, 1520-1528; g) A.
Wang, L. Cheng, X. Shen, W. Zhu, L. Li, Dyes Pigments 2020, 181; h) H.
Li, Z. Sui, New J. Chem. 2019, 43, 17963-17973.
[6]
[7]
a) N. Manoranjan, D. H. Won, J. Kim, S. I. Woo, J. CO2 Util. 2016, 16,
486-491; b) A. Rehman, S.-J. Park, Bull. Korean Chem. Soc. 2017, 38,
1285-1292; c) Z. Liu, J. Ou, H. Wang, X. You, M. Ye, ACS Appl. Mater.
Inter. 2016, 8, 32060-32067; d) B.-J. Yao, J.-T. Li, N. Huang, J.-L. Kan,
L. Qiao, L.-G. Ding, F. Li, Y.-B. Dong, ACS Appl. Mater. Inter. 2018, 10,
20448-20457.
a) J. Meng, Y. Zhou, H. Chi, K. Li, J. Wan, Z. Hu, Chemistryselect 2019,
4, 8661-8670; b) F.-L. Li, P. Wang, X. Huang, D. J. Young, H.-F. Wang,
P. Braunstein, J.-P. Lang, Angew. Chem. Int. Edit. 2019, 58, 7051-7056;
c) G. Liu, K. Wang, X. Gao, D. He, J. Li, Electrochim. Acta 2016, 211,
871-878.
[8]
[9]
a) G. Cai, L. Zeng, L. He, S. Sun, Y. Tong, J. Zhang, Chemistry – An
Asian Journal 2020, 15, 1963-1969; b) X. L. Wang, L. Z. Dong, M. Qiao,
Y. J. Tang, J. Liu, Y. Li, S. L. Li, J. X. Su, Y. Q. Lan, Angew. Chem. Int.
Ed. Engl. 2018, 57, 9660-9664.
Acknowledgements
a) F. Zheng, D. Xiang, P. Li, Z. Zhang, C. Du, Z. Zhuang, X. Li, W. Chen,
ACS Sustain. Chem. Eng. 2019, 7, 9743-9749; b) S. Yuan, L. Cui, X. He,
W. Zhang, T. Asefa, Int. J. Hydrogen Energy 2020, 45, 28860-28869; c)
Z. Liao, Y. Wang, Q. Wang, Y. Cheng, Z. Xiang, Appl. Catal. B-Environ.
2019, 243, 204-211.
We thank the National Nature Science Foundation of China for
financial support (Nos 22071169 and 51673141), as well as the
Local Joint Engineering Laboratory for Novel Functional
Polymeric Materials, the Priority Academic Program Development
of Jiangsu Higher Education Institutions (PAPD) and the Project
of Scientific and Technologic Infrastructure of Suzhou
(SZS201905).
[10] a) F. L. Li, P. Wang, X. Huang, D. J. Young, H. F. Wang, P. Braunstein,
J. P. Lang, Angew. Chem. Int. Ed. Engl. 2019, 58, 7051-7056; b) F. L. Li,
Q. Shao, X. Huang, J. P. Lang, Angew. Chem. Int. Ed. Engl. 2018, 57,
1888-1892; c) M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135,
12329-12337; d) C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian,
J. Q. Nie, F. Wei, Adv. Mater. 2015, 27, 4516-4522; e) J. Chang, L. Chen,
S. Zang, Y. Wang, D. Wu, F. Xu, K. Jiang, Z. Gao, J. Colloid Interface
Sci. 2020, 569, 50-56; f) X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang,
ACS Catal. 2015, 6, 580-588.
Keywords: Porous organic polymer • Porphyrin • Oxygen
evolution reaction • Electrocatalysis
[11] a) H. Dong, X. Zhang, X. C. Yan, Y. X. Wang, X. Sun, G. Zhang, Y. Feng,
F. M. Zhang, ACS Appl Mater Interfaces 2019, 11, 45080-45086; b) X.
Ling, F. Du, Y. Zhang, Y. Shen, T. Li, A. Alsaedi, T. Hayat, Y. Zhou, Z.
Zou, Rsc Advances 2019, 9, 33558-33562; c) Q. Zha, M. Li, Z. Liu, Y. Ni,
ACS Sustain. Chem. Eng. 2020, 8, 12025-12035.
[1]
a) S. Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 2017, 117, 1515-
1563; b) D. Taylor, S. J. Dalgarno, Z. Xu, F. Vilela, Chem. Soc. Rev. 2020,
49, 3981-4042; c) T. Zhang, G. Xing, W. Chen, L. Chen, Mater. Chem.
Front. 2020, 4, 332-353; d) Y. Tian, G. Zhu, Chem. Rev. 2020, 120, 8934-
8986.
[12] X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang, C. Xu,
ACS Energy Letters 2018, 3, 2520-2526.
[2]
[3]
T.-X. Wang, H.-P. Liang, D. A. Anito, X. Ding, B.-H. Han, J. Mater. Chem.
A 2020, 8, 7003-7034.
[13] M. Yuasa, K. Oyaizu, A. Yamaguchi, M. Kuwakado, J. Am. Chem. Soc.
2004, 126, 11128-11129.
a) J. Mohammed-Ibrahim, J. Power Sources 2020, 448, 227375; b) L.
Lei, D. Huang, C. Zhou, S. Chen, X. Yan, Z. Li, W. Wang, Coord. Chem.
Rev. 2020, 408, 213177; c) L. Gong, H. Yang, A. I. Douka, Y. Yan, B. Y.
Xia, Adv. Sustain. Syst. 2020, 2000136; d) R. Gao, D. Yan, Adv. Energy
Mater. 2019, 1900954; e) K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int.
Edit. 2019, 58, 1252-1265; f) W. Zhang, D. Li, L. Zhang, X. She, D. Yang,
J. Energy Chem. 2019, 39, 39-53; g) C. Li, J. Chen, Y. Wu, W. Cao, S.
[14] Z. Tan, J. Zhu, W. Yang, Catal. Commun. 2017, 94, 60-64.
[15] J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao, Z.-Y. Yuan, ACS
Sustain. Chem. Eng. 2019, 8, 223-237.
[16] D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei, H. C. Zhou, Angew. Chem.
Int. Ed. Engl. 2012, 51, 10307-10310.
6
This article is protected by copyright. All rights reserved.