Journal of the American Chemical Society
Communication
(2) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225.
led to rapid decomposition of the nitrile-ligated copper triflate
at room temperature without formation of a species that could
be detected by 19F NMR spectroscopy. The higher yields
obtained with AgF than with other fluorides might be due, at
least in part, to the low solubility of this fluoride source. The
slow background reaction of AgF with (tBuCN)2CuOTf leads
to a lower concentration of the copper(I) fluoride and thus a
lower rate of decomposition.
(3) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(4) Watson, D. A.; Su, M. J.; Teverovskiy, G.; Zhang, Y.; Garcia-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
(5) Tang, P. P.; Wang, W. K.; Ritter, T. J. Am. Chem. Soc. 2011, 133,
11482.
(6) (a) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009,
131, 1662. (b) Tang, P. P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc.
2010, 132, 12150.
A proposed reaction mechanism that is consistent with our
data and known chemistry of copper is shown in Scheme 4. In
(7) (a) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed.
2008, 47, 5993. (b) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860.
(8) Tang, P. P.; Ritter, T. Tetrahedron 2011, 67, 4449.
(9) (a) Fier, P.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524.
(b) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed.
2012, 51, 536. (c) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 3793.
(10) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(11) Casitas, A.; Canta, M.; Sola, M.; Costas, M.; Ribas, X. J. Am.
Chem. Soc. 2011, 133, 19386.
Scheme 4. Proposed Mechanism for the Fluorination of 1
with (tBuCN)2CuOTf and AgF
(12) See SI.
(13) Calcd: C, 34.87; H, 4.79; N, 7.39. Found: C, 34.96; H, 4.88; N,
7.53.
t
this pathway, reversible oxidative addition of an aryl iodide to a
nitrile-ligated CuOTf forms an arylcopper(III) iodide contain-
ing a coordinated or loosely bound triflate. The rate and
equilibrium for oxidative addition are likely faster for copper
complexes containing the more donating tBuCN than for those
containing other nitriles, and this expectation is consistent with
the higher yields from reactions conducted with this ligand than
from those conducted with other nitriles. The electrophilicity of
a Cu(III) triflate might favor transmetalation of AgF with this
species, and we propose this reaction occurs to form an
arylcopper(III) fluoride that undergoes C−F bond formation.
In summary, we have developed an operationally simple
fluorination of aryl iodides with readily available reagents. This
reaction tolerates ether, amide, ester, ketone, and aldehyde
functional groups and occurs with some heterocyclic systems.
Moreover, it occurs in high yield with sterically hindered aryl
iodides. We propose that this reaction occurs by oxidative
addition to form a Cu(III) intermediate and C−F reductive
elimination from an arylcopper(III) fluoride. Work is ongoing
to extend the work described here to the synthesis of 18F-
labeled compounds for PET imaging.
(14) See the SI for the influence of the ratio of BuCN:Cu on the
fluorination of aryl iodides.
(15) Anhydrous DMF was purchased from Acros and stored over
molecular sieves, water content <0.005%.
(16) (a) Paine, A. J. J. Am. Chem. Soc. 1987, 109, 1496. (b) Aalten, H.
L.; Vankoten, G.; Grove, D. M.; Kuilman, T.; Piekstra, O. G.; Hulshof,
L. A.; Sheldon, R. A. Tetrahedron 1989, 45, 5565. (c) Couture, C.;
Paine, A. J. Can. J. Chem. 1985, 63, 111. (d) Arai, S.; Hida, M.;
Yamagishi, T. Bull. Chem. Soc. Jpn. 1978, 51, 277.
(17) (a) Bethell, D.; Jenkins, I. L.; Quan, P. M. J. Chem. Soc., Perkin
Trans. 2 1985, 1789. (b) Zhang, S. L.; Liu, L.; Fu, Y.; Guo, Q. X.
Organometallics 2007, 26, 4546. (c) Weingarten, H. J. Org. Chem.
1964, 29, 3624. (d) Cohen, T.; Cristea, I. J. Am. Chem. Soc. 1976, 98,
748.
(18) Abeywickrema, A. N.; Beckwith, A. L. J. J. Chem. Soc., Chem.
Comm. 1986, 464.
(19) No cyclization was observed in the absence of copper.
(20) Enemaerke, R. J.; Christensen, T. B.; Jensen, H.; Daasbjerg, K. J.
Chem. Soc., Perkin Trans. 2 2001, 1620.
(21) (a) Cohen, T.; Cristea, I. J. Org. Chem. 1975, 40, 3649.
(b) Cohen, T.; Wood, J.; Dietz, A. G. Tetrahedron Lett. 1974, 3555.
(22) Grushin, V. V.; Marshall, W. J. Organometallics 2008, 27, 4825.
(23) Waddington, T. C. Trans. Faraday Soc. 1959, 55, 1531.
(24) (a) Herron, J. R.; Ball, Z. T. J. Am. Chem. Soc. 2008, 130, 16486.
(b) Gulliver, D. J.; Levason, W.; Webster, M. Inorg. Chim. Acta 1981,
52, 153.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization of all new com-
pounds, and crystallographic data (CIF) for (tBuCN)4CuOTf
and (tBuCN)2CuOTf. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the NIH (R37GM055382-14) for support of this
work and Ramesh Giri for checking the procedure. A
provisional patent application has been filed on this work.
REFERENCES
■
(1) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.;
Olah, J. A. J. Org. Chem. 1979, 44, 3872.
10798
dx.doi.org/10.1021/ja304410x | J. Am. Chem. Soc. 2012, 134, 10795−10798