Liang et al.
J ) 7.0 Hz, 2H). 13C NMR (CDCl3, 75 MHz): δ ) 158.6, 130.0,
128.4, 114.1, 71.8, 55.3, 34.4. HRMS: calcd for C9H13NO4S
231.0565, found 231.0560.
128.5, 115.1, 75.5, 59.7, 55.9. HRMS: calcd for C9H11NO4S
229.0409, found 229.0406.
2j. H NMR (CDCl3, 300 MHz): δ ) 7.88 (m, 4H), 7.51 (m,
1
1
1j. H NMR (CDCl3, 400 MHz): δ ) 7.81 (m, 3H), 7.69 (s,
3H), 5.26 (m, 1H), 4.91 (t, J ) 8.6 Hz, 1H), 4.82 (m, 1H), 4.55
(t, J ) 8.6 Hz, 1H). 13C NMR (CDCl3, 100 MHz): δ ) 134.0,
133.5, 132.9, 130.1, 128.4, 128.2, 127.5, 127.4, 126.8, 123.7,
75.1, 60.2. HRMS: calcd for C12H11NO3S 249.0460, found
249.0454.
1H), 7.47 (m, 2H), 7.32 (d, J ) 8.1 Hz, 1H), 4.63 (s, 2H), 4.49
(t, J ) 6.9 Hz, 2H), 3.21 (t, J ) 6.9 Hz, 2H). 13C NMR (CDCl3,
100 MHz): δ ) 134.2, 133.8, 132.8, 128.7, 128.0, 127.9, 127.8,
127.4, 126.7, 126.2, 71.8, 35.8. HRMS: calcd for C12H13NO3S
251.0616, found 251.0601.
1
2k . H NMR (CDCl3, 300 MHz): δ ) 7.92 (m, 3H), 7.76 (d,
1k . 1H NMR (CDCl3, 300 MHz): δ ) 8.01 (d, J ) 7.4 Hz,
1H), 7.88 (d, J ) 7.8 Hz, 1H), 7.77(m, 1H), 7.53 (m, 2H), 7.41
(m, 2H), 4.53 (m, 4H), 3.54 (t, J ) 7.3 Hz, 2H). 13C NMR
(CDCl3, 75 MHz): δ ) 134.2, 132.1, 129.4, 128.3, 127.7, 126.8,
J ) 7.2 Hz, 1H), 7.58 (m, 3H), 5.84 (m, 1H), 5.06 (m, 1H), 4.93
(d, J ) 6.7 Hz, 1H), 4.59 (t, J ) 8.0 Hz, 1H). 13C NMR (CDCl3,
75 MHz): δ ) 133.9, 130.8, 130.3, 129.9, 129.4, 127.3, 126.4,
125.6, 123.9, 123.8, 74.3, 56.4. HRMS: calcd for C12H11NO3S
249.0460, found 249.0460.
126.2, 125.9, 123.5, 118.5, 71.1, 32.7. HRMS: calcd for C12H13
-
NO3S 251.0616, found 251.0616.
1
2l. H NMR (CDCl3, 400 MHz): δ ) 7.34 (m, 2H), 7.10 (m,
1
1l. H NMR (CDCl3, 400 MHz): δ ) 7.14 (m, 2H), 6.98 (m,
2H), 4.89 (s, 2H), 4.20 (t, J ) 6.3 Hz, 2H), 2.72 (t, J ) 7.4 Hz,
2H), 2.04 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ ) 161.6 (d,
J C-F ) 242.5 Hz), 136.0, 129.8, 115.3, 70.3, 30.7, 30.4. HRMS:
calcd for C9H12FNO3S 233.0522, found 233.0517.
2H), 4.85 (m, 2H), 4.65 (m, 1H), 4.35 (d, J ) 9.3 Hz, 1H), 2.22
(m, 1H), 2.01 (m, 1H). 13C NMR (CDCl3, 100 MHz): δ ) 162.8
(d, J C-F ) 247.0 Hz), 133.8, 128.4, 116.1, 71.7, 58.3, 30.1.
HRMS: calcd for C9H10FNO3S 231.0365, found 231.0365.
2m . 1H NMR (CDCl3, 300 MHz): δ ) 7.27 (m, 2H), 6.91 (m,
2H), 4.81 (m, 2H), 4.65 (m, 1H), 4.25 (d, J ) 9.3 Hz, 1H), 3.81
(s, 3H), 2.25 (m, 1H), 1.99 (m, 1H). 13C NMR (CDCl3, 75
MHz): δ ) 159.9, 130.1, 127.6, 114.5, 71.8, 58.4, 55.3, 30.1.
HRMS: calcd for C10H13NO4S 243.0565, found 243.0567.
1m . 1H NMR (CDCl3, 400 MHz): δ ) 7.11 (m, 2H), 6.83 (m,
2H), 4.82 (s, 2H), 4.19 (t, J ) 6.3 Hz, 2H), 3.79 (s, 3H), 2.69 (t,
J ) 7.3 Hz, 2H), 2.04 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ
) 158.1, 132.4, 129.4, 114.0, 70.5, 55.3, 30.6, 30.5. HRMS:
calcd for C10H15NO4S 245.0722, found 245.0720.
1
2n . H NMR (CDCl3, 300 MHz): δ ) 7.32 (m, 1H), 6.91 (m,
1n . 1H NMR (CDCl3, 400 MHz): δ ) 7.21 (t, J ) 7.4 Hz,
1H), 6.76 (m, 3H), 4.75 (s, 2H), 4.09 (t, J ) 6.6 Hz, 2H), 3.80
(s, 3H), 2.67 (t, J ) 8.0 Hz, 2H), 1.96 (m, 2H). 13C NMR (CDCl3,
100 MHz): δ ) 159.8, 142.0, 129.5, 120.9, 114.4, 111.5, 70.5,
55.2, 31.6, 30.2. HRMS: calcd for C10H15NO4S 245.0722, found
245.0723.
3H), 4.85 (m, 2H), 4.67 (m, 1H), 4.32 (d, J ) 9.3 Hz, 1H), 3.82
(s, 3H), 2.23 (m, 1H), 2.04 (m, 1H). 13C NMR (CDCl3, 100
MHz): δ ) 160.2, 139.5, 130.2, 118.2, 114.3, 112.1, 71.8, 58.8,
55.4, 30.2. HRMS: calcd for C10H13NO4S 243.0565, found
243.0571.
Typ ica l P r oced u r e for Com p etitive In tr a m olecu la r
Am id a tion of pa r a -Su bstitu ted Su lfa m a te Ester p-X-
C6H4(CH2)2OSO2NH2 (X ) MeO, Me, Cl, Br ) vs C6H5-
(CH2)2OSO2NH2 Ca ta lyzed by [Ru (F 20-TP P )(CO)]. To a
mixture of p-X-C6H4(CH2)2OSO2NH2 (1 mmol), C6H5(CH2)2-
OSO2NH2 (1 mmol), [Ru(F20-TPP)(CO)] (0.015 mmol), and
Al2O3 (0.6 mmol) in dichloromethane (10 mL) was added PhI-
(OAc)2 (0.5 mmol). The mixture was stirred at room temper-
ature under argon for 3 h, followed by filtration through Celite.
Chromatography on silica gel with dichloromethane as eluent
gave a mixture of two cyclic sulfamidate products (correspond-
ing to the intramolecular amidation of p-X-C6H4(CH2)2OSO2-
NH2 and C6H5(CH2)2OSO2NH2, respectively). The molar ratio
of these two products was determined by 1H NMR and was
taken as the relative rate kX/kH.
Typ ica l P r oced u r e for Com p etitive In ter m olecu la r
Am id a tion of Hyd r oca r bon s w ith “P h I(OAc)2 + NH2SO2-
p-C6H4NO2” Ca ta lyzed by [Ru (F 20-TP P )(CO)]. PhI(OAc)2
(0.5 mmol) was added to a dichloromethane solution containing
ethylbenzene (1 mmol), another hydrocarbon (1 mmol), NH2-
SO2-p-C6H4NO2 (0.5 mmol), 1,4-dichlorobenzene (1 mmol) (as
the internal standard), and [Ru(F20-TPP)(CO)] (0.02 mmol).
The reaction mixture was stirred at room temperature for 3
h. The amounts of ethylbenzene and the other hydrocarbon
before and after the reaction were determined by GC. The ratio
between the consumed moles of the other hydrocarbon and
ethylbenzene was taken as the relative rate kR.
1
1o. H NMR (CDCl3, 400 MHz): δ ) 7.21 (m, 1H), 7.12 (d,
J ) 7.3 Hz, 1H), 6.87 (m, 2H), 4.89 (s, 2H), 4.20 (t, J ) 6.4 Hz,
2H), 3.81 (s, 3H), 2.73 (t, J ) 7.3 Hz, 2H), 2.03 (m, 2H). 13C
NMR (CDCl3, 100 MHz): δ ) 157.8, 130.4, 129.2, 127.9, 120.8,
110.8, 71.5, 55.6, 29.0, 26.7. HRMS: calcd for C10H15NO4S
245.0722, found 245.0721.
Typ ica l P r oced u r e for In tr a m olecu la r Am id a tion of
Su lfam ate Ester s Catalyzed by [Ru (F 20-TP P )(CO)]. Dichlo-
romethane (1.5 mL) was added via syringe into a Schlenk flask
containing sulfamate ester (0.18 mmol), PhI(OAc)2 (0.36
mmol), catalyst (0.0027), Al2O3 (0.45 mmol), and molecular
sieves (4 Å, 50 mg) under an argon atmosphere. The mixture
was stirred at 40 °C for 2 h, diluted with dichloromethane (5
mL) after cooling to room temperature, and filtered through
Celite. The residue on Celite was washed with dichloro-
methane (2 × 5 mL). Evaporation of the combined filtrates
under reduced pressure followed by chromatography on silica
gel column with dichloromethane as eluent afforded cyclic
sulfamidate as a white solid.
Typ ica l P r oced u r e for Asym m etr ic In tr a m olecu la r
Am id a tion of Su lfa m a te Ester s Ca ta lyzed by [Ru (P or *)-
(CO)]. This procedure is the same as that for catalyst [Ru-
(F20-TPP)(CO)] except that 0.25 mmol of PhI(OAc)2 and 0.018
mmol of catalyst [Ru(Por*)(CO)] (rather than [Ru(F20-TPP)-
(CO)]) was used and the reaction was conducted in benzene
at 5 °C for 8 h.
1
2g. H NMR (CDCl3, 300 MHz): δ ) 7.38 (m, 4H), 5.06 (m,
Typ ica l P r oced u r e for In tr a m olecu la r Azir id in a tion
1H), 4.89 (d, J ) 5.7 Hz, 1H), 4.84 (t, J ) 7.0 Hz, 1H), 4.40 (t,
J ) 8.4 Hz, 1H). 13C NMR (CDCl3, 75 MHz): δ ) 135.9, 134.5,
130.0, 128.4, 74.9, 59.3. HRMS: calcd for C8H8ClNO3S 232.9913,
found 232.9922.
of Un sa tu r a ted Su lfon a m id es Ca ta lyzed by [Ru (F 20
-
TP P )(CO)]. This procedure is the same as that for the [Ru-
(F20-TPP)(CO)]-catalyzed intramolecular amidation of sulfa-
mate esters except that 0.2 mmol of unsaturated sulfonamide
(instead of sulfamate ester), 0.3 mmol of PhI(OAc)2, 0.004
mmol of catalyst, and 0.5 mmol of Al2O3 were used, and the
mixture was stirred for 3 h (affording cyclic sulfonamide rather
than sulfamidate).
1
2h . H NMR (CDCl3, 300 MHz): δ ) 7.26 (m, 4H), 5.05 (m,
1H), 4.81 (m, 1H), 4.70 (d, J ) 6.2 Hz, 1H), 4.44 (t, J ) 8.8
Hz, 1H), 2.37 (s, 3H). 13C NMR (CDCl3, 75 MHz): δ ) 139.7,
132.1, 130.1, 126.6, 75.1, 59.5, 21.1. HRMS: calcd for C9H11
NO3S 213.0460, found 213.0453.
-
1
5g. H NMR (CDCl3, 300 MHz): δ ) 5.86 (m, 1H), 5.32 (m,
2i. 1H NMR (CDCl3, 400 MHz): δ ) 7.34 (d, J ) 8.6 Hz,
2H), 6.94 (d, J ) 8.5 Hz, 2H), 5.02 (m, 1H), 4.78 (t, J ) 6.8
Hz, 1H), 4.69 (d, J ) 6.4 Hz, 1H), 4.44 (t, J ) 8.7 Hz, 1H),
3.82 (s, 3H). 13C NMR (CDCl3, 100 MHz): δ ) 160.9, 129.4,
2H), 4.21 (s, 1H), 4.16 (t, J ) 6.7 Hz, 1H), 3.18 (m, 2H), 2.58
(m, 1H), 2.23 (m, 1H). 13C NMR (CDCl3, 75 MHz): δ ) 136.8,
117.9, 57.2, 47.6, 29.9. HRMS: calcd for C5H9NO2S 147.0354,
found 147.0347.
3618 J . Org. Chem., Vol. 69, No. 11, 2004