10.1002/anie.201802563
Angewandte Chemie International Edition
COMMUNICATION
for the development of new metathesis reactions involving inert
C(sp3)–X bonds.
Acknowledgements
We acknowledge the Max-Planck-Society and the Max-Planck-
Institut für Kohlenforschung for continuous support of our
research program. Financial support from the European
Research Council under the European Union’s Horizon 2020
research and innovation program (grant agreement No 757608
ShuttleCat) is gratefully acknowledged. We thank Prof. Dr.
Benjamin List for sharing analytical equipment and our analytical
departments (X-Ray, MS and GC) for excellent support.
Keywords: metathesis, iron catalysis, ethers, tetrahydropyrans,
tetrahydrofurans, morpholines
[1]
[2]
R. H. Grubbs, Handbook of Metathesis (Wiley-VCH, 2003).
(a) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243; (b) A.
Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3012; Angew. Chem. 2000,
112, 3140; (c) F. Sinclair, M. Alkattan, J. Prunet, M. P. Shaver, Polym.
Chem. 2017, 8, 3385; (d) A. Deiters, S. F. Martin, Chem. Rev. 2004,
104, 2199; (e) H.-G. Schmalz, Angew. Chem. Int. Ed. Engl. 1995, 34,
1833; Angew. Chem. 1995, 107, 1981; (f) A. Gradillas, J. Pérez-
Castells, Angew. Chem. Int. Ed. 2006, 45, 6086; Angew. Chem. 2006,
118, 6232; (g) M. Schuster, S. Blechert, Angew. Chem. Int. Ed. Engl.
1997, 36, 2036; Angew. Chem. 1997, 109, 2124.
Scheme 4. Additional mechanistic experiments.
Collectively, these results are best explained by the mechanism
depicted in Scheme 5. Iron(III) triflate first forms a Lewis
acid/base adduct (34) with one of the ether oxygen atoms.
Subsequent intramolecular nucleophilic attack of the non-
coordinated oxygen atom furnishes the cyclic oxonium
intermediate (26) and an iron methoxide complex (27). This
methoxide complex (27) demethylates the oxonium species (26),
thereby yielding tetrahydropyran (2) and dimethyl ether (3) while
regenerating the active catalytic species.
[3]
[4]
(a) A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 2794-2819; Angew.
Chem. 2013, 125, 2860; (b) X. Wu, M. Tamm, Beilstein J. Org. Chem.
2011, 7, 82; (c) P. W. Davies in Metathesis in Natural Product
Synthesis: Strategies, Substrates and Catalysts, Vol. 1 (Eds. J. Cossy,
S. Arseniyadis, C. Meyer), Wiley-VCH, Weinheim, 2010, 205-223; (d) A.
Fürstner, P. W. Davies, Chem. Commun 2005, 2307.
(a) J. R. Ludwig, P. M. Zimmerman, J. B. Gianino, C. S. Schindler,
Nature 2016, 533, 374; (b) C. C. McAtee, P. S. Riehl, C. S. Schindler, J.
Am. Chem. Soc. 2017, 139, 2960; (c) J. R. Ludwig, C. S. Schindler,
Synlett 2017, 28, 1501; (d) E. J. Groso, A. N. Golonka, R. A. Harding, B.
W. Alexander, T. M. Sodano, C. S. Schindler, ACS Catal. 2018, 8,
2006; (e) L. Ma, W. Li, H. Xi, X. Bai, E. Ma, X. Yan, Z. Li, Angew. Chem.
Int. Ed. 2016, 55, 10410; Angew. Chem. 2016, 128, 10566; (f) A. K.
Griffith, C. M. Vanos, T. H. Lambert, J. Am. Chem. Soc. 2012, 134,
18581; (g) V. R. Naidu, J. Bah, J. Franzén, Eur. J. Org. Chem. 2015,
1834.
[5]
(a) C. M. Bell, D. A. Kissounko, S. H. Gellman, S. S. Stahl, Angew.
Chem. Int. Ed. 2007, 46, 761; Angew. Chem. 2007, 119, 775; (b) N. A.
Stephenson, J. Zhu, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc.
2009, 131, 10003.
[6]
[7]
(a) Z. Lian, B. N. Bhawal, P. Yu, B. Morandi, Science 2017, 356, 1059;
for a review on catalytic activation of C(sp2)–O bonds see: (b) J.
Cornella, C. Zarate, R. Martin, Chem. Soc. Rev. 2014, 43, 8081.
(a) S. Okumura, F. Sun, N. Ishida, M. Murakami, J. Am. Chem. Soc.
2017, 139, 12414; (b) Y. Ma, L. Zhang, Y. Luo, M. Nishiura, Z. Hou, J.
Am. Chem. Soc. 2017, 139, 12434; (c) T. Seiser, N. Cramer, Angew.
Chem. Int. Ed. 2010, 49, 10163; Angew. Chem. 2010, 122, 10361.
Scheme 5. Proposed mechanism.
In conclusion, we have presented the first synthetically relevant
aliphatic ether metathesis reaction, a reaction which is enabled
by iron catalysis. The method described provides access to
substituted tetrahydrofuran and tetrahydropyran derivatives in an
efficient manner. Mechanistic experiments support a Lewis acid
catalyzed pathway that likely proceeds via cyclic oxonium
intermediates. Overall, our reaction design provides a blueprint
[8]
[9]
(a) D. J. Cárdenas, Angew. Chem. Int. Ed. 2003, 42, 384; Angew.
Chem. 2003, 115, 398; (b) D. J. Cárdenas, Angew. Chem. Int. Ed.
1999, 38, 3018; Angew. Chem. 1999, 111, 3201; (c) T.-Y. Luh, M.-K.
Leung, K.-T. Wong, Chem. Rev. 2000, 100, 3187.
(a) B. N. Bhawal, B. Morandi, Isr. J. Chem. 2018, 58, 94; (b) P. Yu, B.
Morandi, Angew. Chem. Int. Ed. 2017, 56, 15693; Angew. Chem. 2017,
129, 15899; (c) X. Fang, B. Cacherat, B. Morandi, Nat. Chem. 2017, 9,
1105; (d) B. N. Bhawal, B. Morandi, Chem. Eur. J. 2017, 23, 12004; (e)
B. N. Bhawal, B. Morandi, ACS. Catal. 2016, 6, 7258; (f) X. Fang, P.
Yu, G. Prina Cerai, B. Morandi, Chem. Eur. J. 2016, 22, 15629; (g) X.
Fang, P. Yu, B. Morandi, Science 2016, 351, 832.
This article is protected by copyright. All rights reserved.