5754
M. Honda et al. / Tetrahedron Letters 47 (2006) 5751–5754
6. For reports about synthesis and reaction of silyl-substi-
tuted homoallyl alcohol, see: (a) Semeyn, C.; Blaauw, R.
H.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997,
62, 3426–3427; (b) Dobbs, A. P.; Martinovic, S. Tetra-
hedron Lett. 2002, 43, 7055–7057; (c) Miura, K.; Hosomi,
A. Synlett 2003, 143–155.
7. (a) For reviews on the cyclopropane chemistry, see: Small
Ring Compounds in Organic Synthesis I–V; de Meijere, A.,
Ed.; Topics in Current Chemistry; Springer: Berlin,
Heidelberg; 1986, 1987, 1988, 1990, 1996; Vols. 133, 135,
144, 155, 178; (b) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-
W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989,
89, 165–198; (c) de Meijere, A.; Wessjohann, L. Synlett
1990, 20–32.
1-Silylcyclopropylmethanols reacted with TsOH in
methanol to afford different homoallyl ethers depending
upon the configuration of substituents on cyclopropane
ring and the kinds of substituents on carbinyl carbon.
Especially, the reaction of cyclopropylmethanols having
no substituents on the same side with silyl group on
cyclopropane ring proceeded to give the corresponding
E-homoallyl ethers. The protiodesilylation of resulting
homoallyl ethers proceeded with retention of configura-
tion, thus it was found that the geometry of the alkene
moiety of protiodesilylated products is the opposite to
that of Julia reaction using the corresponding cyclopro-
pylmethanols. Further studies are aimed at expanding
the scope of these reactions, and introduction of other
functional group instead of silyl group and the following
the homoallylic rearrangement reaction is now in pro-
gress in our laboratory. The results will be reported in
due course.
8. Oda, H.; Sato, M.; Morisawa, Y.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1983, 24, 2877–2880.
9. Kitatani, K.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc.
1975, 97, 949–951.
10. Typical procedure for the homoallylic rearrangement of 1-
silylcyclopropylmethanol with TsOH:1-silylcyclopropyl-
methanol solution (2 mmol in 10 ml of methanol) was
placed in a round-bottomed flask under argon, followed
by the addition of TsOH (2.4 mmol) at 0 °C. The mixture
was stirred for 2 h. The reaction was quenched with a
sodium hydrogen carbonate aqueous solution. The prod-
uct was extracted with pentane, washed with brine, dried
with anhydrous Na2SO4, concentrated under reduced
pressure, and separated with silica gel chromatography
using a mixture of hexane and dichloromethane as the
eluent, affording the corresponding homoallyl ethers.
Selected spectral properties of compound 14 are as
follows. IR (neat): 3060, 3025, 2950, 2940, 1615, 1455,
Acknowledgments
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Sci-
ence, Sports and Culture, Japan.
References and notes
1. For leading references on cyclopropylcarbinyl cations, see:
(a) Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. Chem.
Rev. 1992, 92, 69–95; (b) Prakash, G. K. S. J. Org. Chem.
2006, 71, 3661–3676.
2. For recent reports about utilization of cyclopropylcarbinyl
cation in organic synthesis, see: (a) Bentley, T. W.; Engels,
B.; Hupp, T.; Bogdan, E.; Christl, M. J. Chem. Org. 2006,
71, 1018–1026; (b) Roubelakis, M. M.; Vougioukalakis,
G. C.; Angelis, Y. S.; Orfanopoulos, M. Org. Lett. 2006, 8,
39–42; (c) Nakamura, I.; Kamada, M.; Yamamoto, Y.
Tetrahedron Lett. 2004, 45, 2903–2906.
3. For reports about Julia ring opening of a cyclopropyl-
methanol, see: (a) Brimble, M. A.; Prabaharan, H.
Tetrahedron 1998, 54, 2113–2128; (b) Sarel, S.; Yovell,
J.; Sarel-Imber, M. Angew. Chem., Int. Ed. Engl. 1968, 7,
577–588; (c) Brady, S. F.; Ilton, M. A.; Johnson, W. S. J.
Am. Chem. Soc. 1968, 90, 2882–2888; (d) Julia, M.; Julia,
S.; Gue¨gan, R. Bull. Soc. Chim. Fr. 1960, 1072–1079; (e)
Julia, M.; Julia, S.; Tchen, S.-Y. Bull. Soc. Chim. Fr. 1961,
1849–1853.
4. For metal-catalyzed transformation of cyclopropylmetha-
nol into homoallylic derivatives, see: (a) Maeda, Y.;
Nishimura, T.; Uemura, S. Chem. Lett. 2005, 34, 380–381;
(b) Cossy, J.; Blanchard, N.; Meyer, C. Tetrahedron Lett.
2002, 43, 1801–1805.
1250, 1105, 835 cmꢀ1 1H NMR (400 MHz, CDCl3): d
.
7.31–7.16 (m, 5H), 6.87 (s, 1H), 3.31 (dq, 1H, J = 8.1,
6.1 Hz), 3.23 (s, 3H), 3.03 (dq, 1H, J = 8.1, 7.5 Hz), 1.06
(d, 3H, J = 6.1 Hz), 1.00 (d, 3H, J = 7.5 Hz), 0.22 (s, 9H).
HRMS calcd for C16H26OSi (M+) 262.1753, found
262.1757.
11. Cyclopropylidene derivatives were formed as the bypro-
duct via Peterson olefination, when moderate yields were
observed.
12. For leading references on the bisected conformation of
cyclopropylcarbinyl cations, see: (a) Lowry, T. H.; Rich-
ardson, K. S. Mechanism and Theory in Organic Chemis-
try, 3rd ed.; Harper & Row: New York, 1987; (b)
Haywood-Farmer, J. Chem. Rev. 1974, 74, 315–350; (c)
Wilcox, C. F.; Loew, L. M.; Hoffmann, R. J. Am. Chem.
Soc. 1973, 95, 8192–8193.
13. For reviews on the bicyclobutonium ions, see: (a)
Richey, H. G. In Carbonium Ions; Olah, G. A., Schleyer,
P. v. R., Eds.; Wiley-Interscience: New York, 1972; Vol.
III, Chapter 25; (b) Wiberg, K. B.; Hess, B. A.; Ashe,
A. J. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R.,
Eds.; Wiley-Interscience: New York, 1972; Vol. III,
Chapter 26; (c) Siehl, H.-U.; Muller, T. In The Chemistry
¨
of Organic Silicon Compounds; Rappoport, Z., Apeloig,
Y., Eds.; Wiley: Chichester, UK, 1998; Vol. 2, Chapter
12.
5. For reports about the homoallylic rearrangement of
cyclopropylsilylcarbinyl cation, see: (a) Honda, M.;
Yamamoto, Y.; Tsuchida, H.; Segi, M.; Nakajima, T.
Tetrahedron Lett. 2005, 46, 6465–6468; (b) Sakaguchi, K.;
Higashino, M.; Ohfune, Y. Tetrahedron 2003, 59, 6647–
6658; (c) Sakaguchi, K.; Fujita, M.; Ohfune, Y. Tetra-
hedron Lett. 1998, 39, 4313–4316.
14. For reports about bromo etherification with NBS, see: (a)
Hart, D. J.; Leroy, V.; Merriman, G. H.; Young, D. G. J.
J. Org. Chem. 1992, 57, 5670–5680; (b) Schlessinger, R.
H.; Nugent, R. A. J. Am. Chem. Soc. 1982, 104, 1116–
1118; (c) Corey, E. J.; Pearce, H. L. J. Am. Chem. Soc.
1979, 101, 5841–5843.