While a wide variety of different diaryliodonium salts
are readily available or can be prepared efficiently,10À12 the
availability of sulfinic acid sodium salts is rather limited.13
In order to expand the scope of our method, we were
interested in the use of other, more easily accessible sulfinic
acid salts. We envisioned that the corresponding sulfinic
acid lithium salts 2 should display a similar reactivity
(Scheme 1). These lithium sulfinates can be prepared in a
very straightforward manner from the reaction of organo-
lithium compounds 1 with sulfur dioxide.14 Considering
the huge variety of well-known organolithium reagents,15
this approach would allow a modular synthesis of arylsulfones
using sulfur dioxide16 as the source for the sulfonyl
moiety. Herein, we wish to report a one-pot synthesis of
arylsulfones based on this concept.
Scheme 1. Routes to Arylsulfones Based on Diaryliodonium
Salts
(6) (a) Artico, M.; Silvestri, R.; Pagnozzi, E.; Bruno, B.; Novellino,
E.; Greco, G.; Massa, S.; Ettore, A.; Loi, A. G.; Scintu, F.; La Colla, P.
J. Med. Chem. 2000, 43, 1886–1891. (b) Neamati, N.; Mazumder, A.;
Zhao, H.; Sunder, S.; Burke, T. R.; Schultz, R. J.; Pommier, Y.
Antimicrob. Agents Chemother. 1997, 41, 385–393. (c) Artico, M.;
Silvestri, R.; Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; La Colla, P.
J. Med. Chem. 1996, 39, 522–530. (d) Williams, T. M.; Ciccarone, T. M.;
MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra, J. K.; Emini,
E. A.; Goldman, M. E.; Greenlee, W. J.; Kauffman, L. R.; O’Brien, J. A.;
Sardana, V. V.; Schleif, W. A.; Theoharides, A. D.; Anderson, P. A.
J. Med. Chem. 1993, 36, 1291–1294.
(7) (a) Kantam, L. M.; Neelima, B.; Sreedhar, B.; Chakravarti, R.
Synlett 2008, 10, 1455–1458. (b) Kar, A.; Sayyed, I. A.; Lo, W. F.;
Kaiser, H. M.; Beller, M.; Tse, M. K. Org. Lett. 2007, 9, 3405–3408. (c)
Cacchi, S.; Fabrizi, G.; Goggoamani, A.; Parisi, L. M.; Bernini, R.
J. Org. Chem. 2004, 69, 5608–5614. (d) Cacchi, S.; Fabrizi, G.;
Goggiamani, A.; Parisi, L. M. Synlett 2003, 3, 361–364. (e) Baskin,
J. M.; Wang, Z. Org. Lett. 2002, 4, 4423–4425. (f) Suzuki, H.; Abe, H.
Tetrahedron Lett. 1995, 36, 6239–6242.
We started our initial studies with benzene sulfinic acid
lithium salt (2a), which could be easily prepared in quanti-
tative yield from the reaction of phenyllithium (1a) and
sulfur dioxide and subsequent removal of the solvents.17
As expected the reaction between the lithium salt 2a and
diphenyliodonium triflate (3a) proceeded efficiently and
furnished diphenylsulfone (4a). The best results were
obtained in the polar aprotic solvents DMF, DMSO,
and NMP (Table 1, entries 1À3). Other solvents, such as
THF or dioxane, led to lower yields (entries 4 and 5). As
with sodium sulfinic acid salts, this reaction is insensitive to
air and moisture. Performing the reaction without the
exclusion of air and moisture, using commercial grade
DMF or DMSO, 4a was isolated in identical yields
(entries 6 and 7). In the case of sulfinic acid lithium salts,
the nature of the diphenyliodonium counterion XÀ has a
pronounced effect on the yield of the reaction. While
reactions with non-nucleophilic counterions, such as
OTfÀ, BF4À, or PF6À, furnished the product 4a in >80%
(8) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 188–191.
(9) Shortly after our communication, Kumar et. al reported an
almost identical procedure: Kumar, D.; Arun, V.; Pilania, M.; Shekar,
K. P. C. Synlett 2013, 24, 831–836.
(10) For reviews on diaryliodonium salts, see: (a) Merritt, E. A.;
Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052–9070. (b) Zhdankin,
V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299–5358. (c) Yusubov, M. S.;
Maskaev, A. V.; Zhdankin, V. V. ARKIVOC 2011, 370–409.
(11) For efficient routes to diaryliodonium salts, see: (a) Bielawski,
M.; Olofsson, B. Org. Synth. 2009, 86, 308–314. (b) Bielawski, M.; Aili,
D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602–4607. (c) Zhu, M.;
Jalalian, N.; Olofsson, B. Synlett 2008, 4, 592–596. (d) Bielawski, M.;
Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610–2618. (e)
Hossain, M. D.; Kitamura, T. Bull. Chem. Soc. Jpn. 2007, 80, 2213. (f)
Hossain, M. D.; Ikegami, Y.; Kitamura, T. J. Org. Chem. 2006, 71,
9903–9905. (g) Carroll, M. A.; Pike, V. W.; Widdowson, D. A. Tetra-
hedron Lett. 2000, 41, 5393. (h) Kitamura, T.; Matsuyuki, J.; Taniguchi,
H. Synthesis 1994, 147. (i) Stang, P. J.; Zhdankin, V. V.; Tykwinski, R.;
Zefirov, N. S. Tetrahedron Lett. 1991, 32, 7497–7498.
(12) For some recent applications of diaryliodonium salts, see: (a)
Jalalian, N.; Petersen, T. B.; Olofsson, B. Chem.;Eur. J. 2012, 18,
14140–14149. (b) Petersen, T. B.; Khan, R.; Olofsson, B. Org. Lett. 2011,
13, 3462–3465. (c) Jalalian, N.; Ishikawa, E. E.; Silva, L. F., Jr.;
Olofsson, B. Org. Lett. 2011, 13, 1552–1555. (d) Ackermann, L.;
Dell’Acqua, M.; Fenner, S.; Vicente, R.; Sandmann, R. Org. Lett.
2011, 13, 2358–2360. (e) Allen, A. E.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2011, 133, 4260–4263. (f) Bigot, A.; Williamson, A. E.;
Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778–13781. (g) Ciana,
C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2011, 50, 458–462.
Table 1. Survey of Solvents and Influence of the Counteriona
entry
solvent
DMF
salt
XÀ
yield (%)b
1
3a
3a
3a
3a
3a
3a
3a
3b
3c
3d
3e
3a
OTf
OTf
OTf
OTf
OTf
OTf
OTf
Cl
84
80
83
47
26
79c
86c
60
86
91
65
83
2
DMSO
NMP
3
4
1,4-dioxane
THF
5
6
DMSO
DMF
7
8
DMF
(13) Only a few sulfinic acid sodium salts are commercially available.
Most commonly the sodium salts have to be prepared from the corre-
sponding sulfonyl chlorides. See also ref 14.
(14) Truce, W. E.; Murphy, A. M. Chem. Rev. 1951, 48, 69–124.
(15) (a) Patai, S., Rappoport, Z., Marek, I., Eds. The Chemistry of
Organolithium Compounds; Wiley: New York, 2006. (b) Clayden, J.,
Baldwin, J. E., Willaims, R. M., Eds. Organolithium: Selectivity for
Synthesis; Pergamon: 2002.
9
DMF
PF6
BF4
OTs
OTf
10
11
12d
DMF
DMF
DMF
a Reaction conditions: 1.5 equiv of 2a and 1.0 equiv of 3 in 1.0 mL of
solvent at 90 °C for 24 h. b Isolated yield. c Reaction run without
exclusion of air or moisture. d Performed as one-pot reaction/without
isolating the salt 2a.
(16) For some recent examples of reactions with SO2, see: (a)
ꢀ
Woolven, H.; Gonzalez-Rodrıguez, C.; Marco, I.; Thompson, A. L.;
´
Willis, M. C. Org. Lett. 2011, 13, 4876–4878. (b) Nguyen, B.; Emmet,
E. J.; Willis, M. C. J. Am. Chem. Soc. 2010, 132, 16372–16373. (c)
Markovic, D.; Volla, C. M. R.; Vogel, P.; Varela-Alvarez, A.; Sordo,
J. A. Chem.;Eur. J. 2010, 16, 5969–5975. (d) Pandya, R.; Murashima,
T.; Tedeschi, L.; Barrett, A. G. M. J. Org. Chem. 2003, 68, 8274–8276.
(17) See Supporting Information for experimental details.
B
Org. Lett., Vol. XX, No. XX, XXXX