S. Kobatake et al.
Bull. Chem. Soc. Jpn., 77, No. 5 (2004)
951
ed to the reaction mixture at ꢂ78 ꢃC, and the resulting mixture was
stirred for 1.5 h at this temperature. The reaction was stopped by
the addition of water. The product was extracted with chloroform.
The organic layer was dried over MgSO4, filtrated, and concentrat-
ed. The residue was purified by column chromatography on silica
gel using hexane/ethyl acetate (95:5) as the eluent to give 1a (0.76
g, 81%). 1H NMR (200 MHz, CDCl3, 25 ꢃC, TMS) ꢆ 1.94 (s, 6H,
CH3), 1.96 (s, 6H, CH3), 7.2–7.5 (m, 18H, Ar), 7.6–7.7 (m, 8H,
Ar), 7.80 (dd, J ¼ 1:2, 8.0 Hz, 2H, Ar). MS m/z 1252 (Mþ). Anal.
Calcd for C69H40F12N2S4: C, 66.12; H, 3.22; N, 2.24%. Found: C,
66.10; H, 3.24; N, 2.18%.
4
T. Fukaminato, S. Kobatake, T. Kawai, and M. Irie, Proc.
Japan Acad., Ser. B, 77, 30 (2001).
M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai,
Nature, 420, 759 (2002).
5
6
(1997).
7
(2000).
K. Nakatani and J. A. Delaire, Chem. Mater., 9, 2682
K. Matsuda and M. Irie, J. Am. Chem. Soc., 122, 8309
8
9
K. Matsuda and M. Irie, Chem.—Eur. J., 7, 3466 (2001).
K. Morimitsu, K. Shibata, S. Kobatake, and M. Irie, J. Org.
Chem., 67, 4574 (2002).
10 M. Morimoto, S. Kobatake, and M. Irie, Adv. Mater., 14,
1027 (2002).
11 M. Morimoto, S. Kobatake, and M. Irie, J. Am. Chem. Soc.,
125, 11080 (2003).
12 M. Irie and K. Uchida, Bull. Chem. Soc. Jpn., 71, 985
(1998).
13 M. Irie, Chem. Rev., 100, 1685 (2000).
14 A. Peters and N. R. Branda, Adv. Mater. Opt. Electron., 10,
245 (2000).
15 K. Matsuda and M. Irie, J. Am. Chem. Soc., 123, 9896
(2001).
16 S. Kobatake and M. Irie, Tetrahedron, 59, 8359 (2003).
17 T. Kaieda, S. Kobatake, H. Miyasaka, M. Murakami, N.
Iwai, Y. Nagata, A. Itaya, and M. Irie, J. Am. Chem. Soc., 124,
2015 (2002).
18 K. Yagi and M. Irie, Chem. Lett., 32, 848 (2003).
19 M. Irie, K. Uchida, T. Eriguchi, and H. Tsuzuki, Chem.
Lett., 1995, 899.
20 K. Uchida and M. Irie, Chem. Lett., 1995, 969.
21 a) S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M.
Irie, J. Am. Chem. Soc., 121, 2380 (1999). b) T. Yamada, S.
Kobatake, K. Muto, and M. Irie, J. Am. Chem. Soc., 122, 1589
(2000). c) T. Yamada, S. Kobatake, and M. Irie, Bull. Chem.
Soc. Jpn., 73, 2179 (2000).
Closed-Ring Isomers of 1a (1b and 1c). 1b and 1c were iso-
lated by passing a photoirradiated solution containing 1a, 1b, and
1c through a HPLC (Hitachi L-7100 pump system equipped with a
Hitachi L-7400 detector, a silica-gel column (Kanto, MightySil Si
60), and hexane/ethyl acetate (9:1) as the eluent). The retention
times for 1a, 1b, and 1c were 60, 50, and 41 min, respectively.
1b: 1H NMR (200 MHz, CDCl3, 25 ꢃC, TMS) ꢆ 1.94 (s, 3H,
CH3), 1.97 (s, 3H, CH3), 2.15 (s, 6H, CH3), 6.63 (s, 1H, olefinic
proton), 6.74 (s, 1H, olefinic proton), 7.2–7.5 (m, 16H, Ar), 7.6–
1
7.7 (m, 8H, Ar), 7.81 (d, J ¼ 7:4 Hz, 2H, Ar). 1c: H NMR (200
MHz, CDCl3, 25 ꢃC, TMS) ꢆ 2.16 (s, 12H, CH3), 6.64 (s, 2H, ole-
finic proton), 6.74 (s, 2H, olefinic proton), 7.2–7.5 (m, 14H, Ar),
7.6–7.7 (m, 8H, Ar), 7.81 (d, J ¼ 7:4 Hz, 2H, Ar).
General Procedure of X-ray Crystallographic Analysis. An
X-ray crystallographic analysis was performed using a Bruker
SMART1000 CCD-based diffractometer (50 kV, 40 mA) with
Mo Kꢂ radiation. The crystals were cooled at 123 K by a cryostat
(Rigaku GN2). The data were collected as a series of !-scan
frames, each with a width of 0.3ꢃ/frame. The crystal-to-detector
distance was 5.124 cm. Crystal decay was monitored by repeating
the 50 initial frames at the end of data collection and analyzing the
duplicate reflections. Data reduction was performed using SAINT
software, which corrects for Lorentz and polarization effects, as
well as decay. The cell constants were determined by a global re-
finement. The structures were solved by direct methods using
SHELXS-86,31 and refined by full least-squares on F2 using
SHELXL-97.32 The positions of all hydrogen atoms were calculat-
ed geometrically and refined by the riding model. Crystallographic
data have been deposited at the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK and copies can be obtained on request, free of
charge, by quoting the publication citation and the deposition num-
ber CCDC-230686.
22 S. Kobatake, M. Yamada, T. Yamada, and M. Irie, J. Am.
Chem. Soc., 121, 8450 (1999).
23 a) M. Irie, T. Lifka, S. Kobatake, and N. Kato, J. Am. Chem.
Soc., 122, 4871 (2000). b) T. Yamada, K. Muto, S. Kobatake, and
M. Irie, J. Org. Chem., 66, 6164 (2000).
24 T. Kodani, K. Matsuda, T. Yamada, S. Kobatake, and M.
Irie, J. Am. Chem. Soc., 122, 9631 (2000).
25 S. Yamamoto, K. Matsuda, and M. Irie, Angew. Chem., Int.
Ed., 42, 1936 (2003).
26 K. Matsuda, K. Takayama, and M. Irie, Chem. Commun.,
2001, 363.
27 M. Irie, S. Kobatake, and M. Horichi, Science, 291, 1769
(2001).
28 a) K. Shibata, K. Muto, S. Kobatake, and M. Irie, J. Phys.
Chem. A, 106, 209 (2002). b) S. Kobatake, K. Uchida, E. Tsuchida,
and M. Irie, Chem. Commun., 2002, 2804.
29 T. Yamada, S. Kobatake, and M. Irie, Bull Chem. Soc. Jpn.,
75, 167 (2002).
This work was partly supported by the Grants-in-Aid for
Scientific Research (S) (No. 15105006), Scientific Research
on Priority Areas (Nos. 15033252 and 12131211), and the
21st century COE program from the Ministry of Education,
Culture, Sports, Science and Technology. We thank Nippon
Zeon Co., Ltd. for their supply of octafluorocyclopentene.
References
1
G. H. Brown, ‘‘Photochromism,’’ Wiley-Interscience, New
York (1971).
H. Durr and H. Bouas-Laurent, ‘‘Photochromism: Mole-
30 M. Morimoto, S. Kobatake, and M. Irie, Chem.—Eur. J., 9,
621 (2003).
31 G. M. Sheldrick, Acta Crystallogr., Sect. A, 46, 467 (1990).
32 G. M. Sheldrick, ‘‘SHELXL-97, Program for Crystal
2
¨
cules and Systems,’’ Elsevier, Amsterdam (1990).
S. Kawata and Y. Kawata, Chem. Rev., 100, 1777 (2000).
3
Structure Refinement,’’ Universitat Gottingen, Gottingen (1997).
¨ ¨ ¨