Y.D. Perfiliev et al. / Inorganica Chimica Acta 360 (2007) 2789–2791
2791
[5] J.E. Penner-Hahn, K.S. Eble, T.J. McMurty, M. Renner, A.L. Balch,
J.T. Groves, J.H. Dawson, K.O. Hodgson, J. Am. Chem. Soc. 108
(1986) 7819.
[6] X. Shan, L. Que Jr., J. Org. Biochem. 100 (2006) 421.
[7] A. Basan, M.R.A. Blomberg, P.E.M. Siegbahn, L. Que Jr., Ang.
Chem., Int. Ed. 44 (2005) 2939.
[8] L. Daguillaume, M. Leriche, K. Desboeufs, G. Maillhot, C. George,
N. Chaumerliac, Chem. Rev. 105 (2005) 3388.
[9] A. Ghosh, F.T.D. Oliveira, T. Yano, T. Nishioka, E.S. Beach, I.
Kinoshita, E. Munck, A.D. Ryabov, C.P. Horwitz, T.J. Collins, J.
Am. Chem. Soc. 127 (2005) 2505.
[10] R. Hoppe, K. Mader, Z. Anorg. Allg. Chem. 586 (1990) 115.
[11] M.T. Weller, A.L. Hector, Angew. Chem., Int. Ed. 39 (2000) 4162.
[12] S. Licht, B. Wang, S. Ghosh, Science 285 (1999) 1039.
[13] V.K. Sharma, Adv. Environ. Res. 6 (2002) 143.
[14] V.K. Sharma, Water Sci. Technol. 49 (2004) 69.
[15] V.K. Sharma, F. Kazama, H. Jiangyong, A.K. Ray, J. Water Health
3 (2005) 42.
Mo¨ssbauer radiation by the solvent. To solve this problem,
Fe(NO)3 enriched with 57Fe (95%) was used as iron(III)
source. Iron(VI) ions were prepared by ozonalysis of
iron(III) in 5 M NaOH. The resulted solution was frozen
in liquid nitrogen for Mo¨ssbauer measurements. Mo¨ss-
bauer spectrum of the frozen solution (77 K) is presented
in Fig. 2. The spectrum contains one single-line with the
isomer shift ꢀ0.80(1) mm sꢀ1 and full width at half-height
0.32(5) mm sꢀ1. The d in Fig. 2 is similar to values of d for
various salts of iron(VI) ion, which vary from ꢀ0.79 to
ꢀ0.85 mm sꢀ1 [28]. Thus, the iron(VI) species synthesized
in the present study is the same as has been prepared chem-
ically using hypochlorite ion and by other techniques
[15,29–31].
[16] V.K. Sharma, S.K. Mishra, N. Nesnas, Environ. Sci. Technol. (2006)
In press.
4. Conclusions
[17] J.Q. Jiang, S. Wang, A. Panagoulopoulos, Chemosphere 63 (2006)
212.
[18] J.Q. Jiang, A. Panagoulopoulos, M. Bauer, P. Pearce, J. Environ.
Manag. 79 (2006) 215.
[19] G.W. Thompson, L.T. Ockerman, J.M. Schreyer, J. Am. Chem. Soc.
73 (1951) 1279.
[20] A.J. Bard, R. Parsons, J. Jordon (Eds.), Standard Electrode Poten-
tials in Aqueous Solutions, Marcel Dekker Inc., New York, NY,
1985.
The high-valent iron(VI) was obtained in oxidation of
iron(III) by ozone in alkaline medium. This procedure
can be used as a simple and environmentally-friendly
method to produce FeO42ꢀ ion. The UV–Visible and Mo¨ss-
bauer spectra were found consistent with the hexavalent
iron state of the ion.
Acknowledgement
[21] W.P. Griffith, Coord. Chem. Rev. 219–221 (2001) 259.
[22] T. Logager, J. Holcman, K. Schested, T. Pedersen, Inorg. Chem. 31
(1992) 3523.
[23] O. Pestovsky, A. Bakac, J. Am. Chem. Soc. 126 (2004) 13757.
[24] B.H.J. Bielski, Method Enzymol. 186 (1990) 108.
[25] J.D. Rush, B.H. Bielski, J. Am. Chem. Soc. 108 (1986) 523.
[26] G.D. Michelis, L. Oleari, L.D. Sipio, A.E. Tondello, Coord. Chem.
Rev. 2 (1967) 53.
We thank Dr. Zoltan Homonnay for comments on the
paper. This work was supported by the Russian Founda-
tion for Basic Research, project no. 05-03-33079.
References
[27] Y.D. Perfiliev, Russ. J. Inorg. Chem. 47 (2002) 611.
[28] F. Menil, J. Phys. Chem. Solids 45 (1985) 763.
[29] R.H. Herber, D. Johnson, Inorg. Chem. 18 (1979) 2786.
[30] S. Licht, V. Naschitz, B. Liu, S. Ghosh, N. Halperin, L. Lelperin, D.
Rozen, J. Power Sources 99 (2001) 7.
[1] H. Beinert, R.H. Holm, E. Munck, Science 277 (1997) 653.
[2] J.T. Groves, J. Inorg. Biochem. 100 (2006) 434.
[3] L. Delude, P. Laszlo, J. Org. Chem. 61 (1996) 6350.
[4] S. Goldstein, D. Meyerstein, Acc. Chem. Res. 32 (1999) 547.
[31] K.E. Ayers, N.C. White, J. Electrochem. Soc. 152 (2005) A467.