ACS Medicinal Chemistry Letters
Letter
(9) Myint, A. M.; Kim, Y. K. Cytokine−serotonin interaction through
IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses
2003, 61, 519−525.
(10) Maes, M.; Leonard, B. E.; Myint, A. M.; Kubera, M.; Verkerk, R.
The new ‘5-HT’ hypothesis of depression: Cell-mediated immune
activation induces indoleamine 2,3-dioxygenase, which leads to lower
plasma tryptophan and an increased synthesis of detrimental
tryptophan catabolites (TRYCATs), both of which contribute to the
onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011,
35, 702−721.
(11) Wainwright, D. A.; Balyasnikova, I. V.; Chang, A. L.; Ahmed, A.
U.; Moon, K.-S.; Auffinger, B.; Tobias, A. L.; Han, Y.; Lesniak, M. S.
IDO expression in brain tumors increases the recruitment of
regulatory T cells and negatively impacts survival. Clin. Cancer Res.
2012, 18, 6110−6121.
(12) Munn, D. H.; Mellor, A. L. Indoleamine 2,3-dioxygenase and
metabolic control of immune responses. Trends Immunol. 2013, 34,
137−143.
(27) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. CuI-catalyzed
alkyne-azide ″click″ cycloadditions from a mechanistic and synthetic
perspective. Eur. J. Org. Chem. 2006, 2006, 51−68.
(28) Crumpton, J. B.; Santos, W. L. Site-specific incorporation of
diamondoids on DNA using click chemistry. Chem. Commun. 2012,
48, 2018−2020.
(29) Basran, J.; Rafice, S. A.; Chauhan, N.; Efimov, I.; Cheesman, M.
R.; Ghamsari, L.; Raven, E. L. A kinetic, spectroscopic, and redox study
of human tryptophan 2,3-dioxygenase. Biochemistry 2008, 47, 4752−
4760.
(30) Lu, C.; Lin, Y.; Yeh, S.-R. Inhibitory substrate binding site of
human indoleamine 2,3-dioxygenase. J. Am. Chem. Soc. 2009, 131,
12866−12867.
(31) Chauhan, N.; Thackray, S. J.; Rafice, S. A.; Eaton, G.; Lee, M.;
Efimov, I.; Basran, J.; Jenkins, P. R.; Mowat, C. G.; Chapman, S. K.;
Raven, E. L. Reassessment of the reaction mechanism in the heme
dioxygenases. J. Am. Chem. Soc. 2009, 131, 4186−4187.
(32) Basran, J.; Efimov, I.; Chauhan, N.; Thackray, S. J.; Krupa, J. L.;
Eaton, G.; Griffith, G. A.; Mowat, C. G.; Handa, S.; Raven, E. L. The
mechanism of formation of N-formylkynurenine by heme dioxyge-
nases. J. Am. Chem. Soc. 2011, 133, 16251−16257.
(13) Kwidzinski, E.; Bechmann, I. IDO expression in the brain: a
double-edged sword. J. Mol. Med. 2007, 85, 1351−1359.
(14) Muller, A. J.; Prendergast, G. C. Indoleamine 2,3-dioxygenase in
immune suppression and cancer. Curr. Cancer Drug Targets 2007, 7,
31−40.
(33) Fujigaki, H.; Saito, K.; Lin, F.; Fujigaki, S.; Takahashi, K.;
Martin, B. M.; Chen, C. Y.; Masuda, J.; Kowalak, J.; Takikawa, O.;
Seishima, M.; Markey, S. P. Nitration and inactivation of IDO by
peroxynitrite. J. Immunol. 2006, 176, 372−379.
́
(15) Juhasz, C.; Nahleh, Z.; Zitron, I.; Chugani, D. C.; Janabi, M. Z.;
Bandyopadhyay, S.; Ali-Fehmi, R.; Mangner, T. J.; Chakraborty, P. K.;
Mittal, S.; Muzik, O. Tryptophan metabolism in breast cancers:
molecular imaging and immunohistochemistry studies. Nucl. Med. Biol.
2012, 39, 926−932.
(34) Meisel, R.; Zibert, A.; Laryea, M.; Gobel, U.; Daubener, W.;
̈
̈
Dilloo, D. Human bone marrow stromal cells inhibit allogeneic T-cell
responses by indoleamine 2,3-dioxygenase-mediated tryptophan
degradation. Blood 2004, 103, 4619−4621.
(16) Mellor, A. L.; Munn, D. H. Tryptophan catabolism and T-cell
tolerance: immunosuppression by starvation? Immunol. Today 1999,
20, 469−473.
́
(35) Zitron, I. M.; Kamson, D. O.; Kiousis, S.; Juhasz, C.; Mittal, S. In
vivo metabolism of tryptophan in meningiomas is mediated by
indoleamine 2,3-dioxygenase 1. Cancer Biol. Ther. 2013, 14, 333−339.
(17) Munn, D. H.; Mellor, A. L. IDO and tolerance to tumors. Trends
Mol. Med. 2004, 10, 15−18.
̌ ́
(36) Dolusic, E.; Larrieu, P.; Moineaux, L.; Stroobant, V.; Pilotte, L.;
Colau, D.; Pochet, L.; Van den Eynde, B. t.; Masereel, B.; Wouters, J.;
Frederick, R. Tryptophan 2,3-Dioxygenase (TDO) inhibitors. 3-(2-
̌ ́ ́ ́
(18) Dolusic, E.; Frederick, R. Indoleamine 2,3-dioxygenase
́
́
inhibitors: a patent review (2008 − 2012). Expert Opin. Ther. Pat.
2013, 23, 1367−1381.
(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J.
Med. Chem. 2011, 54, 5320−5334.
(19) Washburn, L. C.; Sun, T. T.; Byrd, B. L.; Hayes, R. L.; Butler, T.
A. DL-[Carboxyl-11C]tryptophan, a potential agent for pancreatic
imaging; production and preclinical investigations. J. Nucl. Med. 1979,
20 (8), 857−864.
̌ ́
(37) Dolusic, E.; Larrieu, P.; Blanc, S.; Sapunaric, F.; Pouyez, J.;
Moineaux, L.; Colette, D.; Stroobant, V.; Pilotte, L.; Colau, D.; Ferain,
T.; Fraser, G.; Galleni, M.; Frere, J.-M.; Masereel, B.; Van den Eynde,
B.; Wouters, J.; Frederick, R. Discovery and preliminary SARs of keto-
̀
́
́
(20) Hartvig, P.; Lindner, K. J.; Tedroff, J.; Andersson, Y.; Bjurling,
indoles as novel indoleamine 2,3-dioxygenase (IDO) inhibitors. Eur. J.
P.; Langstrom, B. Brain kinetics of 11C-labelled L-tryptophan and 5-
̊
̈
Med. Chem. 2011, 46, 3058−3065.
hydroxy-L-tryptophan in the Rhesus monkey. A study using positron
emission tomography. J. Neural Transm. 1992, 88 (1), 1−10.
(21) Lundquist, P.; Hartvig, P.; Blomquist, G.; Hammarlund-
Udenaes, M.; Langstrom, B. 5-Hydroxy-L-[β-11C]tryptophan versus
̊
̈
α-[11C]Methyl-L-tryptophan for positron emission tomography
imaging of serotonin synthesis capacity in the rhesus monkey brain.
J. Cereb. Blood Flow Metab. 2006, 27 (4), 821−830.
́
(22) Juhasz, C.; Muzik, O.; Chugani, D. C.; Chugani, H. T.; Sood, S.;
Chakraborty, P. K.; Barger, G. R.; Mittal, S. Differential kinetics of α-
[11C]methyl-L-tryptophan on PET in low-grade brain tumors. J. Neuro-
Oncol. 2011, 102, 409−415.
(23) Gharib, A.; Balende, C.; Sarda, N.; Weissmann, D.; Plenevaux,
A.; Luxen, A.; Bobillier, P.; Pujol, J.-F. Biochemical and autoradio-
graphic measurements of brain serotonin synthesis rate in the freely
moving rat: a reexamination of the α-methyl-L-tryptophan method. J.
Neurochem. 1999, 72, 2593−2600.
(24) Sun, T.; Tang, G.; Tian, H.; Wang, X.; Chen, X.; Chen, Z.;
Wang, S. Radiosynthesis of 1-[18F]fluoroethyl-L-tryptophan as a novel
potential amino acid PET tracer. Appl. Radiat. Isot. 2012, 70, 676−680.
(25) Schultz, A. W.; Lewis, C. A.; Luzung, M. R.; Baran, P. S.; Moore,
B. S. Functional characterization of the cyclomarin/cyclomarazine
prenyltransferase CymD directs the biosynthesis of unnatural cyclic
peptides. J. Nat. Prod. 2010, 73, 373−377.
̈
̀
(26) Girard, C.; Onen, E.; Aufort, M.; Beauviere, S.; Samson, E.;
Herscovici, J. Reusable polymer-supported catalyst for the [3 + 2]
Huisgen cycloaddition in automation protocols. Org. Lett. 2006, 8,
1689−1692.
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX