1360
V. Theodorou et al. / Tetrahedron Letters 46 (2005) 1357–1360
(c) Brown, H. C.; Narasimhan, S.; Choi, Y. M. Synthesis
1981, 441–442.
Wroblewski, A. E.; Halajewska-Wosik, A. Tetrahedron:
Asymmetry 2003, 14, 3359; (e) Lake, F.; Moberg, C. Eur.
J. Org. Chem. 2002, 3179–3188.
4. (a) Gabriel, S. Ber. 1887, 20, 2224–2236. Ber. 1891, 20,
3104–3107; (b) Gibson, M. S.; Bradshaw, W. R. Angew.
Chem., Int. Ed. Engl. 1968, 7, 919–930; (c) Blazevic, N.;
Kolbach, D.; Belin, B.; Sunjic, V.; Kajfez, P. Synthesis
1979, 161–176; (d) Hebrard, P.; Olomucki, M. Bull.
Soc. Chim. Fr. 1970, 1938–1942; (e) Zwierzak, A.;
Podstawczynska, I. Angew. Chem., Int. Ed. Engl. 1977,
9. (a) Zhang, W. J.; Berglund, A.; Kao, J. L.-F.; Couty, J.-P.;
Gershengorn, M. C.; Marshall, G. R. J. Am. Chem. Soc.
2003, 125, 1221–1225; (b) Artuso, F.; Sindona, G.;
Athanassopoulos, C.; Stavropoulos, G.; Papaioannou,
D. Tetrahedron Lett. 1995, 36, 9309–9312.
10. The alkyl tosylates were prepared from ROH and TsCl,
according to: Kabalka, G. W.; Varma, M.; Varma, R. S.;
Strivastava, P. C.; Knapp, F. F. J. Org. Chem. 1986, 51,
2386–2388.
16, 702–704; (f) Mukaiyama, T.; Taguchi, T.; Nishi, M.
¨
Bull. Chem. Soc. Jpn. 1971, 44, 2797–2800; (g) Ruhlmann,
K.; Kuhrt, G. Angew. Chem., Int. Ed. Engl. 1968, 7, 809–
812; (h) Bestmann, H. J.; Wo¨lfel, G. Chem. Ber. 1984, 117,
1250–1254; (i) Itsuno, S.; Koizumi, T.; Okumura, C.; Ito,
K. Synthesis 1995, 150–152; (j) Yinglin, H.; Hongwen, H.
Synthesis 1990, 122–124.
11. Eisch, J. J.; Dua, S. K.; Kovacs, C. A. J. Org. Chem. 1987,
52, 4437–4444.
12. Stork, G.; Grieco, P. A.; Gregson, M. Tetrahedron Lett.
1969, 10, 1393–1395.
5. (a) Aronov, A. M.; Gelb, M. H. Tetrahedron Lett. 1998,
39, 4947–4950; (b) Subramanyam, C. Tetrahedron Lett.
2000, 41, 6537–6540; (c) Katritzky, A. R.; Xie, L.; Zhang,
G.; Griffith, M.; Watson, K.; Kiely, J. S. Tetrahedron Lett.
1997, 38, 7011–7014.
13. TrNHGer: IR (3330, 1651 cmꢀ1 1H NMR (CDCl3,
)
200 MHz) d 1.59 (s, 3H, CH3),1.81 (s, 3H, CH3), 1.90 (s,
3H, CH3), 2.22 (m, 4H, CH2CH2), 2.95 (d, 2H, CH2N),
5.31 (m, 1H, CH@CMe2), 5.55 (m, 1H, CH@CH2N),
7.35–7.55 (m, 9H, Ar-H), 7.74 (d, 6H, Ar-H).
6. (a) Greene, T. W.; Wuts, P. G. M. In Protective Groups in
Organic Synthesis; Wiley: New York, 1991; pp 366–367;
(b) Zervas, L.; Theodoropoulos, D. J. Am. Chem. Soc.
1956, 78, 1359–1363.
7. (a) Soroka, M.; Sygmunt, J. Synthesis 1988, 370–372; (b)
Sharma, S. K.; Songster, M. F.; Colpitts, T. L.; Hegyes,
Pi.; Barany, G.; Castellino, F. J. J. Org. Chem. 1993, 58,
4993–4996.
8. (a) Soroka, M.; Goldeman, W. ARKIVOC 2003, 12, 31–
37; (b) Desai, R. C. J. Org. Chem. 2001, 66, 4939–4940; (c)
Huszthy, P.; Bradshaw, J. S.; Krakoviak, K. E.; Wang, T.;
Dalley, N. K. J. Heterocycl. Chem. 1993, 5, 1197–1208; (d)
14. Tritylamine was prepared by stirring vigorously TrCl with
an excess of 25% ammonia solution in CH2Cl2 for 2 days,
followed by the suitable treatment: the organic layer was
concentrated to dryness, diluted with Et2O, HCl (g) was
bubbled into, and the precipitated hydrochloride salt was
filtered, washed with Et2O, treated with 50% NaOH under
cooling and extracted with Et2O. The tritylamine obtained
was purified by recrystallization from EtOH. Yield 70%,
mp 102 °C, reported: 102–103.5 °C, Mandell, L.; Piper, J.
U.; Pesterfield, C. E. J. Org. Chem. 1963, 28, 574–575.
15. Hoefnagel, A. J.; Vos, R. H.; Wepster, B. M. Recl. Trav.
Chim. Pays-Bas 1992, 111, 22–28.