ACS Medicinal Chemistry Letters
Featured Letter
recognition of N-terminal histone modifications by the BRPF1
bromodomain. J. Mol. Biol. 2014, 426, 1661−1676.
Jackson for chiral separations, Douglas Minick for vibrational
CD, Richard Upton for NMR, Nicholas Leach and Fiona
Shilliday for crystallization, and Melanie Leveridge for help with
manuscript preparation. All animal studies were ethically
reviewed and carried out in accordance with Animals (Scientific
Procedures) Act 1986 and the GSK Policy on the Care, Welfare
and Treatment of Animals.
(13) Qin, S.; Jin, L.; Zhang, J.; Liu, L.; Ji, P.; Wu, M.; Wu, J.; Shi, Y.
Recognition of unmodified histone H3 by the first PHD finger of
bromodomain-PHD finger protein 2 provides insights into the
regulation of histone acetyltransferases monocytic leukemic zinc-finger
protein (MOZ) and MOZ-related factor (MORF). J. Biol. Chem. 2011,
286, 36944−36955.
(14) Laue, K.; Daujat, S.; Crump, J. G.; Plaster, N.; Roehl, H. H.;
Kimmel, C. B.; Schneider, R.; Hammerschmidt, M. The multi-
domainprotein BRPF1 binds histones and is required for Hox gene
expressionand segmental identity. Development 2008, 135, 1935−1946.
(15) Vezzoli, A.; Bonadies, N.; Allen, M. D.; Freund, S. M.; Santiveri,
C. M.; Kvinlaug, B. T.; Huntly, B. J.; Gottgens, B.; Bycroft, M.
Molecular basis of histone H3K36me3 recognition by the PWWP
domain of Brpf1. Nat. Struct. Mol. Biol. 2010, 17, 617−619.
(16) Young, R. J.; Green, D. V. S.; Luscombe, C. N.; Hill, A. P.
getting physical in drug discovery II: the impact of chromatographic
hydrophobicity measurements and aromaticity. Drug Discovery Today
2011, 16, 822−830.
(17) Demont, E. H.; Bamborough, P.; Chung, C.; Craggs, P. D.;
Fallon, D.; Gordon, L. J.; Grandi, P.; Hobbs, C. I.; Hussain, J.; Jones,
E. J.; Le Gall, A.; Michon, A.; Mitchell, D. J.; Prinjha, R. K.; Roberts, A.
D.; Sheppard, R. J.; Watson, R. J. 1,3-Dimethyl Benzimidazolones are
potent, selective inhibitors of the BRPF1 bromodomain. ACS Med.
Chem. Lett. 2014, 5, 1190−1195.
ABBREVIATIONS
■
CLND, ChemiLuminescent Nitrogen Detection; LE, ligand
efficiency; KAc, acetyl-lysine; Sol, solubility
REFERENCES
■
(1) Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert,
J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson,
T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S. Histone recognition
and large-scale structural analysis of the human bromodomain family.
Cell 2012, 149, 214−231.
(2) Nicodeme, E.; Jeffrey, K. L.; Schaefer, U.; Beinke, S.; Dewell, S.;
Chung, C. W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.;
White, J.; Kirilovsky, J.; Rice, C. M.; Lora, J. M.; Prinjha, R. K.; Lee, K.;
Tarakhovsky, A. Suppression of inflammation by a synthetic histone
mimic. Nature 2010, 468, 1119−1123.
(18) (a) Palmer, W. S.; Poncet-Montange, G.; Liu, G.; Petrocchi, A.;
Reyna, M.; Subramanian, G.; Theroff, J.; Yau, A.; Kost-Alimova, M.;
Bardenhagen, J. P.; Leo, E.; Shepard, H. E.; Tieu, T. N.; Shi, X.; Zhan,
Y.; Zhao, S.; Draetta, G.; Toniatti, C.; Jones, P.; Do, M. G.; Andersen,
J. N. Structure-guided design of IACS-9571, a selective high-affinity
dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. 2016, 59,
1440−1454. (b) Bennett, J.; Fedorov, O.; Tallant, C.; Monteiro, O.;
Meier, J.; Gamble, V.; Savitsky, P.; Nunez-Alonso, G. A.; Haendler, B.;
Rogers, C.; Brennan, P. E.; Muller, S.; Knapp, S. Discovery of a
chemical tool inhibitor targeting the bromodomains of TRIM24 and
BRPF1. J. Med. Chem. 2016, 59, 1642−1647. (c) Epigenetics Probes
PFI-4, OF-1, and NI-57).
(19) (a) Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A. The
maximal affinity of ligands. Proc. Natl. Acad. Sci. U. S. A. 1999, 96,
9997−10002. (b) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand
efficiency: a useful metric for lead selection. Drug Discovery Today
2004, 9, 430−431.
(20) Goodford, P. J. A computational procedure for determining
energetically favorable binding sites on biologically important
macromolecules. J. Med. Chem. 1985, 28, 849−857.
(3) Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.;
Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.;
Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.;
West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La, T. N.;
French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E.
Selective inhibition of BET bromodomains. Nature 2010, 468, 1067−
1073.
(4) Chung, C.; Coste, H.; White, J. H.; Mirguet, O.; Wilde, J.;
Gosmini, R. L.; Delves, C.; Magny, S. M.; Woodward, R.; Hughes, S.
A.; Boursier, E. V.; Flynn, H.; Bouillot, A. M.; Bamborough, P.; Brusq,
J. M.; Gellibert, F. J.; Jones, E. J.; Riou, A. M.; Homes, P.; Martin, S. L.;
Uings, I. J.; Toum, J.; Clement, C. A.; Boullay, A. B.; Grimley, R. L.;
Blandel, F. M.; Prinjha, R. K.; Lee, K.; Kirilovsky, J.; Nicodeme, E.
Discovery and Characterization of Small Molecule Inhibitors of the
BET Family Bromodomains. J. Med. Chem. 2011, 54, 3827−3838.
(5) Garnier, J. M.; Sharp, P. P.; Burns, C. J. BET bromodomain
inhibitors: a patent review. Expert Opin. Ther. Pat. 2014, 24, 185−199.
(6) Mirguet, O.; Gosmini, R.; Toum, J.; Clement, C. A.; Barnathan,
M.; Brusq, J.; Mordaunt, J. E.; Grimes, R. M.; Crowe, M.; Pineau, O.;
Ajakane, M.; Daugan, A.; Jeffrey, P.; Cutler, L.; Haynes, A. C.;
Smithers, N. N.; Chung, C.; Bamborough, P.; Uings, I. J.; Lewis, A.;
Witherington, J.; Parr, N.; Prinjha, R. K.; Nicodeme, E. Discovery of
epigenetic regulator I-BET762: Lead optimization to afford a clinical
candidate inhibitor of the BET bromodomains. J. Med. Chem. 2013,
56, 7501−7515.
(21) Deplus, R.; Delatte, B.; Schwinn, M. K.; Defrance, M.; Mendez,
J.; Murphy, N.; Dawson, M. A.; Volkmar, M.; Putmans, P.; Calonne,
E.; Shih, A. H.; Levine, R. L.; Bernard, O.; Mercher, T.; Solary, E.; Urh,
M.; Daniels, D. L.; Fuks, F. TET2 and TET3 regulate GlcNAcylation
and H3K4 methylation through OGT and SET1/COMPASS. EMBO
J. 2013, 32, 645−655.
(7) Filippakopoulos, P.; Knapp, S. Targeting bromodomains:
epigenetic readers of lysine acetylation. Nat. Rev. Drug Discovery
2014, 13, 337−356.
(8) Muller, S.; Knapp, S. Discovery of BET bromodomain inhibitors
and their role in target validation. MedChemComm 2014, 5, 288−296.
(9) Chung, C.; Tough, D. Bromodomains: a new target class for
small molecule drug discovery. Drug Discovery Today: Ther. Strategies
2012, 9, e111−e120.
(10) Carlson, S.; Glass, K. C. The MOZ Histone Acetyltransferase in
Epigenetic Signaling and Disease. J. Cell. Physiol. 2014, 229, 1571−
1574.
(11) Ullah, M.; Pelletier, N.; Xiao, L.; Zhao, S. P.; Wang, K.;
Degerny, C.; Tahmasebi, S.; Cayrou, C.; Doyon, Y.; Goh, S. L.;
Champagne, N.; Cote, J.; Yang, X. J. Molecular architecture of quartet
MOZ/MORF histone acetyltransferase complexes. Mol. Cell. Biol.
2008, 28, 6828−6843.
(12) Poplawski, A.; Hu, K.; Lee, W.; Nateson, S.; Peng, D.; Carlson,
S.; Shi, X.; Balaz, S.; Markley, J. L.; Glass, K. C. Molecular insights into
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX