C O M M U N I C A T I O N S
Scheme 2. Asymmetric Arylation of 8 with 11, Giving 10
In conclusion, a catalytic asymmetric arylation of sterically tuned
imines with arylboroxines was developed by using N-Boc-L-valine-
connected amidomonophosphane rhodium(I) catalyst in n-PrOH.
It is also important to note that further modification of the
amidophosphane is possible with use of other natural R-amino acids.
The TMS group used for the steric tuning of the imine is convertible
to other functionalities that are applicable as a key foothold for the
carbon-carbon bond forming coupling reactions.
Acknowledgment. This research was supported by the 21st
Century Center of Excellence Program “Knowledge Information
Infrastructure for Genome Science” and a Grant-in-Aid for Scientific
Research on Priority Areas (A) “Exploitation of Multi-Element
Cyclic Molecules”, from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. M.K. thanks the JSPS for a
fellowship.
Table 2. Rhodium(I)-7-Catalyzed Asymmetric Arylation of
N-Tosylarylimines 8 with Arylboroxines 11 in n-PrOH, Giving 10
temp
(°C)
yield
(%)
entry
8
Ar1
11
Ar2
era
1
2
3
4
5
6
7
8
9
8a 4-MeC6H4
8b 3-MeC6H4
11b 4-PhC6H4
11b 4-PhC6H4
11b 4-PhC6H4
60
60
60
60
60
80
80
60
60
100
86
90
97
98
83
84
97
87
99
88
86:14
88:12
93:7
96:4
83:17
94:6
95:5
95:5
97:3
96:4
8c
2-MeC6H4
Supporting Information Available: Experimental procedure,
characterization data, NMR spectra, and HPLC traces (PDF). This
8d 2-TMSC6H4 11b 4-PhC6H4
8e Ph 11b 4-PhC6H4
8d 2-TMSC6H4 11c 4-MeOC6H4
8d 2-TMSC6H4 11d 4-ClC6H4
8d 2-TMSC6H4 11e
8d 2-TMSC6H4 11f
3-MeOC6H4
3-ClC6H4
11b 4-PhC6H4
References
(1) For example, see: (a) Spencer, C. M.; Foulds, D.; Peters, D. H. Drugs
1993, 46, 1055-1080. (b) Bishop, M. J.; McNutt, R. W. Bioorg. Med.
Chem. Lett. 1995, 5, 1311-1314. (c) Sakurai, S.; Ogawa, N.; Suzuki, T.;
Kato, K.; Ohashi, T.; Yasuda, S.; Kato, H.; Ito, Y. Chem. Pharm. Bull.
1996, 44, 765-777.
(2) For recent synthesis of diarylmethylamines through resolution, see: (a)
Opalka, C. J.; D’Ambra, T. E.; Faccone, J. J.; Bodson, G.; Cossement, E.
Synthesis 1995, 766-768. (b) Pflum, D. A.; Wilkinson, H. S.; Tanoury,
G. J.; Kessler, D. W.; Kraus, H. B.; Senanayake, C. H.; Wald, S. A. Org.
Process Res. DeV. 2001, 5, 110-115.
10 8f
1-Naphthyl
a
Determined by HPLC or NMR (Supporting Information).
Scheme 3. Protodesilylation, Iododesilylation, and Detosylation
(3) Examples of asymmetric synthesis of diarylmethylamines using chiral
auxiliaries: (a) Pridgen, L. N.; Mokhallalati, M. K.; Wu, M. J. J. Org.
Chem. 1992, 57, 1237-1241. (b) Delorme, D.; Berthelette, C.; Lavoie,
R.; Roberts, E. Tetrahedron: Asymmetry 1998, 9, 3963-3966. (c) Pflum,
D. A.; Krishnamurthy, D.; Han, Z.; Wald, S. A.; Senanayake, C. H.
Tetrahedron Lett. 2002, 43, 923-926. (d) Plobeck, N.; Powell, D.
Tetrahedron: Asymmetry 2002, 13, 303-310. (e) Han, Z.; Krishnamurthy,
D.; Grover, P.; Fang, Q. K.; Pflum, D. A.; Senanayake, C. H. Tetrahedron
Lett. 2003, 44, 4195-4197.
(4) For an asymmetric synthesis of diarylmethylamines using stoichiometric
amounts of chromium complexes, see: Corey, E. J.; Helal, C. J.
Tetrahedron Lett. 1996, 37, 4837-4840.
(5) For an addition of aryllithiums, see: (a) Denmark, S. E.; Nakajima, N.;
Nicaise, O. J. J. Am. Chem. Soc. 1994, 116, 8797-8798. (b) Taniyama,
D.; Hasegawa, M.; Tomioka, K. Tetrahedron Lett. 2000, 41, 5533-5536.
(c) Cabello, N.; Kizirian, J.-C.; Alexakis, A. Tetrahedron Lett. 2004, 45,
4639-4642.
(6) (a) Review: Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829-
2844. (b) Hayashi, T.; Ishigetani, M. J. Am. Chem. Soc. 2000, 122, 976-
977. (c) Hayashi, T.; Ishigetani, M. Tetrahedron 2001, 57, 2589-2595.
(7) Hermanns, N.; Dahmen, S.; Bolm, C.; Bra¨se, S. Angew. Chem., Int. Ed.
2002, 41, 3692-3694.
11b, to the corresponding diarylmethylamides 10 with 93:7 er, 88:
12 er, and 86:14 er (entries 1-3). Naphthylimine 8f was also a
good acceptor with 11b, being converted to 10fb with 96:4 er in
88% yield (entry 10).
(8) (a) Bolm, C.; Hildebrand, J. P.; Mun˜iz, K.; Hermanns, N. Angew. Chem.,
Int. Ed. 2001, 40, 3284-3308. (b) Fagnou, K.; Lautens, M. Chem. ReV.
2003, 103, 169-196.
The 2-TMS group on the phenyl ring of the product was easily
convertible to other functional groups (Scheme 3). Thus, 10db was
protodesilylated with cesium fluoride in refluxing aqueous DMF
for 25 h to afford (R)-10eb15 in 74% yield without any racemization.
This arylation of the TMS-modified imine-protodesilylation se-
quence is complementary to the less effective arylation of phenyl-
imine 8e (Table 2, entries 4 vs 5). Iododesilylation of 10dd with
iodine chloride in methylene chloride at 0 °C for 15 min gave 2-iodo
derivative 12, a useful starting material suitable for the Suzuki-
Miyaura coupling, quantitatively without any racemization. Treat-
ment of 10eb with samarium iodide in refluxing THF-HMPA for
6 h gave the corresponding detosylated (R)-1316 in 98% yield
without any loss of optical purity. The si-face attack to 8 in the
arylation was determined from the established absolute configura-
tion of 10eb and 13.16
(9) Rhodium(I)-catalyzed addition of organoboron reagents to imines was
reported as the racemic version. (a) Ueda, M.; Miyaura, N. J. Organomet.
Chem. 2000, 595, 31-35. (b) Ueda, M.; Saito, A.; Miyaura, N. Synlett
2000, 11, 1637-1639.
(10) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483.
(11) (a) Kuriyama, M.; Tomioka, K. Tetrahedron Lett. 2001, 42, 921-923.
(b) Kuriyama, M.; Nagai, K.; Yamada, K.; Miwa, Y.; Taga, T.; Tomioka,
K. J. Am. Chem. Soc. 2002, 124, 8932-8939.
(12) (a) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122,
12055-12056. (b) Nagai, K.; Fujihara, H.; Kuriyama, M.; Yamada, K.;
Tomioka, K. Chem. Lett. 2002, 8-9. (c) Soeta, T.; Nagai, K.; Fujihara,
H.; Kuriyama, M.; Tomioka, K. J. Org. Chem. 2003, 68, 9723-9727.
(13) Comins, D. L.; Brown J. D. J. Org. Chem. 1984, 49, 1078-1083.
(14) The first “d” of 10df came from 8d, and the last “f” came from 11f.
(15) Cabiddu, S.; Fattuoni, C.; Floris, C.; Gelli, G.; Melis, S.; Sotgiu, F.
Tetrahedron 1990, 46, 861-884.
(16) Botta, M.; Corelli, F.; Gasparrini, F.; Messina, F.; Mugnaini, C. J. Org.
Chem. 2000, 65, 4736-4739.
JA0475398
9
J. AM. CHEM. SOC. VOL. 126, NO. 26, 2004 8129