LETTER
Two-Dimensional Conjugated Modules Based on Tetraphenylethylene
1193
Scheme 2
(4) For two-dimensional tetraethynyl modules based on
11 indicates excimer formation. Apparently, the highly
symmetrical nature of 11 together with its high p-density
favor strong intermolecular p-stacking interactions lead-
ing to excimer formation.
cumulene and iron-cyclobutadiene cores, see: (a) van Loon,
J.-D.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. Engl.
1993, 32, 1187. (b) Bunz, U. H. F.; Enkelmann, V. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1653.
(5) (a) Hori, Y.; Noda, K.; Kobayashi, S.; Taniguchi, H.
Tetrahedron Lett. 1969, 3563. (b) Tykwinski, R. R.;
Diederich, F. Liebigs Ann. Recl. 1997, 649.
In summary, a facile synthetic route to ethylene centered
highly conjugated two-dimensional scaffolds was devel-
oped via Pd-catalyzed reactions (Sonogashira and Heck
reactions) on a tetraphenylethylene core. Photophysical
properties of such molecules are currently under investi-
gation.
(6) (a) Bosshard, C.; Spreiter, R.; Günter, P.; Tykwinski, R. R.;
Schreiber, M.; Diederich, F. Adv. Mater. 1996, 8, 231.
(b) Spreiter, R.; Bosshard, C.; Knöpfle, G. P.; Tykwinski, R.
R.; Schreiber, M.; Diederich, F. J. Phys. Chem. B 1998, 102,
29. (c) Tykwinski, R. R.; Gubler, U.; Martin, R. E.;
Diederich, F.; Bosshard, C.; Knöpfle, G. P. J. Phys. Chem. B
1998, 102, 4451. (d) Mitzel, F.; Boudon, C.; Gisselbrecht,
J.-P.; Seiler, P.; Gross, M.; Diederich, F. Chem. Commun.
2003, 1634. (e) Moonen, N. N. P.; Gist, R.; Boudon, C.;
Gisselbrecht, J.-P.; Seiler, P.; Kawai, T.; Kishioka, A.;
Gross, M.; Irie, M.; Diederich, F. Org. Biomol. Chem. 2003,
1, 2032.
Acknowledgment
Professor Nitin Chattopadhyaya is warmly thanked for the fluo-
rescence measurements. N. Pal is thanked for technical assistance.
References
(7) (a) Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu,
J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.;
Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel,
H.; Rumi, M.; Subramanian, G.; Webb, W. W.; Wu, X.-L.;
Xu, C. Science 1998, 281, 1653. (b) Reinhardt, B. A.; Brott,
L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.;
Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10,
1863. (c) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J.
W.; Barlow, S.; Hu, Z.-Y.; McCord-Maughon, D.; Parker, T.
C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Belijonne,
D.; Brédas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500.
(d) Mongin, O.; Porres, L.; Moreaux, L.; Mertz, J.;
Blanchard-Desce, M. Org. Lett. 2002, 4, 719.
(1) (a) Petty, M. C.; Bryce, M. R.; Bloor, D. An Introduction to
Molecular Electronics; Oxford University Press: New York,
1995. (b) Electronic Materials: The Oligomeric Approach;
Müllen, K.; Wegner, G., Eds.; Wiley-VCH: Weinheim,
1997. (c) Sheats, J. R.; Barbara, P. F. Acc. Chem. Res. 1999,
32(3), 191–276.
(2) (a) Scherf, U.; Müllen, K. Synthesis 1992, 23. (b) Long, N.
J. Angew. Chem., Int. Ed. Engl. 1995, 34, 21. (c) Kraft, A.;
Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed.
1998, 37, 402. (d) Martin, R. E.; Diederich, F. Angew.
Chem. Int. Ed. 1999, 38, 1350. (e) Tour, J. M. Acc. Chem.
Res. 2000, 33, 791. (f) Mitschke, U.; Bäurele, P. J. Mater.
Chem. 2000, 10, 1471. (g) Segura, J. L.; Martin, N. J. Mater.
Chem. 2000, 10, 2403.
(8) Buckles, R. E.; Matlock, G. M. Org. Synth., Coll. Vol. IV
1963, 914.
(3) Diederich, F. Chem. Commun. 2001, 219.
Synlett 2004, No. 7, 1191–1194 © Thieme Stuttgart · New York