The Journal of Organic Chemistry
Article
mathematical integration over a best fitting to Gaussian functions. The
fit was preceded by the removal of the experimental noise using
singular value decompostion (SVD). The Gaussian function was
determined because of better convergence to ∼0.505 Hz spectral
resolution,23 this in comparison to Lorentz and Voigt functions which
give overestimation. The extracted populations were normalized to
one at each time sequence and then were fed into the mathematical
model.24,25 In all cases, the finite instrument response determined
by the interferometry time is included in the fitting procedure by
convolving the model matrix by Gaussian width of fwhm ∼2 min.
Description of the Computational Methods. Optimized
geometries and harmonic frequencies for all the reported species
(starting materials, transition states, intermediates, and products) were
obtained by density functional calculations using the B3LYP hybrid
functional and 6-311+G(d,p) basis set (corrected for unscaled ZPVE).26a
Gas-phase optimized structures were used as input for the calculations
in solution which were reoptimized at the same level of theory with
the integral equation formalism polarized continuum solvation model
(IEF-PCM).27 Energies from these calculations were converted to
thermodynamic data based on the frequency calculations. More accurate
electronic energies were obtained via single-point calculations at the
MP2/6-31G+(d) level of theory. These calculations were performed on
the converged geometries in the gas phase and in solution, respectively.26
Thermal correction to Gibbs free energy was obtained from frequency
calculations in the gas phase and in solution, respectively. All energies in
solution (at MP2 level) include both electrostatic and nonelectrostatic
corrections.26b All transition states were verified by calculating the
intrinsic reaction coordinates (IRC) and/or by examining the imaginary
frequency’s normal mode.28
Sample Preparation. Caution: These experiments should only be
performed by trained personnel using applicable safety procedures. Salt
solutions were prepared by dissolving the appropriate amounts of salt
(KF, NaF, CsF, TBAF, KCl) or KOH in water or buffered aqueous
solution or methanol. Two kinds of solutions were prepared containing
1 or 5 equiv of salts per OP equivalent. An amount of 1 or 5.3 μL
(13.2 mM or 66 mM) of the OP compound (VX or VX-model 1) was
applied via a syringe to a Teflon NMR tube containing 300 μL of the
salt solution. The tube was sealed with a Teflon cap and inserted in
a glass NMR tube. 31P and 19F MAS NMR spectra were measured
periodically to determine the amount of remaining starting material and
identify degradation products. The buffered solutions (0.1 M each)
were prepared by standard procedures,29 carbonate−bicarbonate buffer
for pH 10.5 and 9.65 and Tris buffer for pH 8.64 and 7.45. Tris buffer
contains 3-amino-3-(2-hydroxyethyl)pentane-1,5-diol, which reacts
with EMPA to give the corresponding ester detected by 31P NMR at
δ 32 ppm. It was assumed that it does not dramatically affect the
outcome of the processes.
REFERENCES
■
(1) Selected articles: (a) Kirby, A. J.; Lima, M. F.; da Silva, D.;
Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2006, 128, 16944−16952.
(b) Kirby, A. J.; Lima, M. F.; da Silva, D.; Nome, F. J. Am. Chem. Soc.
2004, 126, 1350−1351. (c) Admiraal, S. J.; Herschlag, D. J. Am. Chem.
Soc. 1999, 121, 5837−5845. (d) Herschlag, D.; Jencks, P. J. Am. Chem.
Soc. 1990, 112, 1951−1956. (e) Kirby, A. J.; Younas, M. J. Chem. Soc.
(B) 1970, 1165−1172. (f) Khan, S. A.; Kirby, A. J. J. Chem. Soc. B
1970, 1172−1182.
(2) (a) Fey, N.; Garland, M.; Hopewell, J. P.; McMullin, C. L.;
Mastroianni, S.; Orpen, A. G.; Pringle, P. G. Angew. Chem., Int. Ed.
2012, 51, 118−122. (b) Grant, D. J.; Matus, M. H.; Switzer, J. R.;
Dixon, D. A.; Francisco, J. S.; Christe, K. O. J. Phys. Chem. A 2008,
112, 3145−3156. (c) Kirby, A. J.; Warren, S. G. In The Organic
Chemistry of Phosphorus; Elsevier Publishing Co.: London, 1966; p 5.
(3) Van der Schans, M. J.; Polhuijs, M.; Van Dijk, C.; Degenhardt, C.
E. A. M.; Pleijsier, K.; Langenberg, J. P.; Benschop, H. P. Arch. Toxicol.
2004, 78, 508−524.
(4) Selected articles: (a) Kim, K.; Tsay, O. G.; Atwood, D. A.;
Churchill, D. G. Chem. Rev. 2011, 111, 5345−5403. (b) Groenewold,
G. S. Main Group Chem. 2010, 9, 221−244. (c) Brevett, C. A. S.;
Sumpter, K. B. Main Group Chem. 2010, 9, 205−219. (d) Vayron, P.;
Renard, P.-Y.; Taran, F.; Creminon, C.; Frobert, Y.; Grassi, J.;
Mioskowski, C. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7058−7063.
(e) Yang, Y.-C. Acc. Chem. Res. 1999, 32, 109−115.
(5) Cragan, J. A.; Ward, M. C.; Mueller, C. B. J. Hazard. Mater. 2009,
170, 72−78.
(6) Marciano, D.; Goldvaser, M.; Columbus, I.; Zafrani, Y. J. Org.
Chem. 2011, 76, 8549−8553.
(7) (a) Zafrani, Y.; Yehezkel, L.; Goldvaser, M.; Marciano, D.;
Waysbort, D.; Gershonov, E.; Columbus, I. Org. Biomol. Chem. 2011,
9, 8445−8451. (b) Gershonov, E.; Columbus, I.; Zafrani, Y. J. Org.
Chem. 2009, 74, 329−338.
(8) Examples for phosphates: (a) Dejaegere, A.; Karplus, M. J. Am.
Chem. Soc. 1993, 115, 5316−5317. (b) Dejaegere, A.; Liang, X.;
Karplus, M. J. Chem. Soc., Faraday Trans. 1994, 90, 1763−1770.
(c) Chang, N.-Y.; Lim, C. J. Phys. Chem. A 1997, 101, 8706−8715.
(d) Chang, N.-Y.; Lim, C. J. Am. Chem. Soc. 1998, 120, 2156−2167.
(e) Florian, J.; Warshel, A. J. Phys. Chem. B. 1998, 102, 719−734.
(f) Hu, C.-H.; Brinck, T. J. Phys. Chem. A 1999, 103, 5379−5386.
(g) Lopez, X.; Dejaegere, A.; Karplus, M. J. Am. Chem. Soc. 2001, 123,
11755−11763. (h) Menegon, G.; Loos, M.; Chaimovich, H. J. Phys.
Chem. A 2002, 106, 9078−9084. (i) Arantes, G. M.; Chaimovich, H. J.
Phys. Chem. A 2005, 109, 5625−5635. (j) Lop
Lera, A. R.; York, D. M. Chem.Eur. J. 2005, 11, 2081−2093.
(k) Iche-Tarrat, N.; Barthelat, J.-C.; Rinaldi, D.; Vigroux, A. J. Phys.
́
ez, C. S.; Faza, O. N.; de
́
Chem. B 2005, 109, 22570−22580. (l) Lopez, X.; Dejaegere, A.;
Leclerc, F.; York, D. M.; Karplus, M. J. Phys. Chem. B 2006, 110,
11525−11539.
ASSOCIATED CONTENT
* Supporting Information
■
S
(9) Examples for phosphonates: (a) Thatcher, G. R. J.; Campbell, A.
S. J. Org. Chem. 1993, 58, 2272−2281. (b) Zheng, F.; Zhan, C.-G.;
Ornstein, R. L. J. Chem. Soc,. Perkin Trans. 2 2001, 2355−2363.
(c) Bell, A. J.; Citra, A.; Dyke, J. M.; Ferrante, F.; Gagliardi, L.; Watts,
P. Phys. Chem. Chem. Phys. 2004, 6, 1213−1218. (d) Barbosa, A. C. P.;
Borges, I., Jr.; Lin, W. O. J. Mol. Struct. (THEOCHEM) 2004, 712,
187−193. (e) Doskocz, M.; Roszak, S.; Majumdar, D.; Doskocz, J.;
Gancarz, R.; Leszczynski, J. J. Phys. Chem. A 2008, 112, 2077−2081.
(f) McAnoy, A. M.; Paine, M. R. L.; Blanksby, S. J. Org. Biomol. Chem.
2008, 6, 2316−2326. (g) Mandal, D.; Mondal, B.; Das, A. K. J. Phys.
Chem. A 2010, 114, 10717−10725. (h) Ashkenazi, N.; Segall, Y.;
Chen, R.; Sod-Moriah, G.; Fattal, E. J. Org. Chem. 2010, 75, 1917−
1926.
Kinetic data of the reactions, NMR spectra, absolute energies,
and number of imaginary frequencies and optimized geometries
for all calculated species performed in different solutions. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
§These authors contributed equally.
(10) Szafraniec, L. J.; Szafraniec, L. L.; Beaudry, W. T.; Ward, J. R.
ADA-250773; U.S. Army Chemical Research, Development and
Engineering Center, Aberdeen Proving Ground: Aberdeen, MD, 1990.
(11) Bandyopadhyay, I.; Kim, M. J.; Lee, Y. S.; Churchill, D. G. J.
Phys. Chem. A 2006, 110, 3655−3661.
(12) (a) Zheng, F.; Zhan, C.-G.; Ornstein, R. L. J. Chem. Soc., Perkin
Trans. 2 2001, 2355−2363. (b) Menke, J. L.; Patterson, E. V. J. Mol.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was internally funded by the Israeli Prime Minister’s
office.
■
10048
dx.doi.org/10.1021/jo301549z | J. Org. Chem. 2012, 77, 10042−10049