C O M M U N I C A T I O N S
Table 1. Experimental Data (Standard Deviation in Parentheses)
Obtained by X-ray Crystallographic Analysis and Theoretical
Optimized Structures of Model Compounds A (C40H20) and B
Acknowledgment. The present research was supported by a
Grant-in-Aid for Scientific Research (Specially Promoted Research)
and The 21st Century COE Programs in Fundamental Chemistry.
We thank Prof. J. Aihara for fruitful discussions on aromaticity.
(C60H12
)
bond length (Å)a,b
iv
compounds
i
ii
iii
v
vi
vii
Supporting Information Available: Synthetic procedure, crystal-
lographic data, and computational details of [10]cyclophenacene (PDF,
CIF). This material is available free of charge via the Internet at http://
pubs.acs.org.
5
1.37(2) 1.44(2) 1.43(1) 1.40(2) 1.43(1) 1.45(1) 1.36(1)
A
(HF)
(B3LYP) 1.37
(PM3)
1.35
1.44
1.44
1.43
1.43
1.45
1.44
1.38
1.42
1.40
1.36
B
References
(HF)
(B3LYP) 1.37
(PM3) 1.37
1.35
1.44
1.45
1.44
1.43
1.44
1.44
1.38
1.39
1.40
(1) Schro¨der, A.; Mekelburger, H.-B.; Vo¨gtle, F. Top. Curr. Chem. 1994,
172, 179.
(2) Cory, R. M.; McPhail, C. L. AdV. Theor. Interesting Mol. 1998, 4, 53.
(3) (a) Heilbronner, E. HelV. Chim. Acta 1954, 37, 921. (b) Vo¨gtle, F. Top.
Curr. Chem. 1983, 115, 157.
(4) (a) Choi, H. S.; Kim, K. S. Angew. Chem., Int. Ed. 1999, 38, 2256. (b)
Houk, K. N.; Lee, P. S.; Nendel, M. J. Org. Chem. 2001, 66, 5517. (c)
Tu¨rker, L. J. Mol. Struct. (THEOCHEM) 1999, 491, 275. (d) Aihara, J.
J. Chem. Soc., Perkin Trans. 2 1994, 971. (e) Kanamitsu, K.; Saito, S. J.
Phys. Soc. Jpn. 2002, 71, 483.
(5) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of
Carbon Nanotubes; Imperial College Press: London, 1998.
(6) (a) Wildo¨er, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.;
Dekker, C. Nature 1998, 391, 59. (b) Odom, T. W.; Huang, J.-L.; Kim,
P.; Lieber, C. M. Nature 1998, 391, 62.
(7) Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C.
W.; Yang, C.; Ellenstein, A. J. Am. Chem. Soc. 1997, 119, 2119.
(8) For the [10]cyclophenacene, there exist 121 other canonical resonance
structures in addition to (a)-(d) shown in Figure 1a, and the calculation
of the Pauling bond order assuming equal contribution of all 125 structures
matches very well with the experimental X-ray structure. We thank a
referee for pointing out this issue for us.
(9) (a) Godt, A.; Enkelmann, V.; Schlu¨ter, A. D. Angew. Chem., Int. Ed. Engl.
1989, 28, 1680. (b) Ashton, P. R.; Brown, G. R.; Isaacs, N. S.; Giuffrid,
D.; Kohnke, F. H.; Mathias, J. P.; Slawin, A. M. Z.; Smith, D. R.; Stoddart,
J. F.; Williams, D. J. J. Am. Chem. Soc. 1993, 115, 5422. (c) Kuwatani,
Y.; Yoshida, T.; Kusaka, A.; Iyoda, M. Tetrahedron Lett. 2000, 41, 359.
(d) St. Martin, H. M.; Scott, L. T. The Tenth International Symposium on
NoVel Aromatic Compounds; Abstract No. P77, August 2001, San Diego,
California.
(10) (a) Sawamura, M.; Iikura, H.; Nakamura, E. J. Am. Chem. Soc. 1996,
118, 12850. (b) Nakamura, E.; Sawamura, M. Pure Appl. Chem. 2001,
73, 355.
(11) Sawamura, M.; Toganoh, M.; Kuninobu, Y.; Kato, S.; Nakamura, E. Chem.
Lett. 2000, 270.
(12) An inseparable mixture of other multiadducts was obtained in about 50%
yield.
(13) (a) Rochefort, A.; Salahub, D. R.; Avouris, P. J. Phys. Chem. B 1999,
103, 641. (b) Cioslowski, J.; Rao, N.; Moncrieff, D. J. Am. Chem. Soc.
2002, 124, 8489. (c) Tanaka, K.; Ago, H.; Yamabe, T.; Okahara, K.;
Okada, M. Int. J. Quantum Chem. 1997, 63, 637. (d) Liu, L.; Jayanthi, C.
S.; Guo, H.; Wu, S. Y. Phys. ReV. B 2001, 64, 033414.
(14) Liu, S.; Lu, Y.; Kappes, M. M.; Ibers, J. A. Science 1991, 254, 408.
(15) Kveseth, K.; Seip, R.; Kohl, D. A. Acta Chem. Scand. 1980, A34, 31.
(16) The important difference between [60]fullerene and the present 40 π
electron system is that the latter does not involve a pentagon within the
conjugate system and hence is a rolled graphite.
(17) (a) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N.
J. R. van E. J. Am. Chem. Soc. 1996, 118, 6317. (b) Bu¨hl, M.; Hirsch, A.
Chem. ReV. 2001, 101, 1153.
(18) Saunders, M.; Jimenez-Vazquez, H. A.; Cross, R. J.; Mroczkowski, S.;
Freedberg, D. I.; Anet, F. A. L. Nature 1994, 367, 256.
a i, iii, v, vii: Average lengths of five equivalent bonds. ii, iv, vi: Average
lengths of 10 equivalent bonds. Calculated data for A and B refer to the
geometry optimized structures (C2h symmetry and D5d symmetry, respec-
tively) obtained by the hybrid density functional method (B3LYP), the
Hartree-Fock ab initio method (HF) using the 6-31G* basis set, and the
semiempirical PM3 method. b See Figure 1 for the numbering of the C-C
bonds (i-vii).
nm) with quantum efficiency of 0.10 in cyclohexane (irradiation
at 366 nm, rhodamin B as standard; see Supporting Information).
X-ray crystallographic structures were obtained for 5 (Table 1).
Whereas the double bonds on the edge are short (bonds i and vii,
1.36(2) and 1.37(2) Å, respectively), bond alternation in the equator
region is very small (iii, v ) 1.43(1) and iv ) 1.40(2) Å). This
experimental structure obviously does not conform to the “ideal
graphitic structure”, which was assumed in most of the previous
theoretical studies of CNTs,13 but rather similar to the Kekule´
structure (a) in Figure 1a. The geometries of the model compounds
C40H20 (A) and C60H12 (B) were optimized with quantum mechan-
ical calculations and found to reproduce the experimental data very
well (Table 1). Note that, in contrast to the [10]cyclophenacenes,
there is distinctive bond alternation in [60]fullerene (1.36 vs 1.47
Å),14 in 1,3-butadiene (1.35 vs 1.47 Å),15,16 and in 20 π-electron
cyclic cis-polyacetylene (1.36 vs 1.46 Å, B3LYP/6-31G*-optimized,
see Supporting Information).
Nucleus independent chemical shift (NICS)17 is a useful measure
of the magnetic shielding effect of the aromatic ring current.
Analysis of the NICS values for six-membered rings of cyclophen-
acene in the model compounds A and B indicates that the hoop-
like 40 π-electron system is aromatic (NICS ) -8.62 and NICS
) -11.46 to -11.99, respectively) and the other rings in B are
nonaromatic (NICS ) -1.27 to 0.30). The center of gravity (CG;
NICS ) -7.25 and NICS ) -11.58) is predicted to be subject to
an aromatic shielding effect (a value experimentally provable by
3He NMR experiments).18
(19) (a) O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano,
M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.;
Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297,
593. (b) Nagasawa, N.; Sugiyama, H.; Naka, N.; Kudryashov, I.;
Watanabe, M.; Hayashi, T.; Bozovic, I.; Bozovic, N.; Li, G.; Li, Z.; Tang,
Z. K. J. Luminescence 2002, 97, 161.
The synthesis of the [10]cyclophenacene compounds, which
represent the shortest (5,5) CNT, provided the first information on
the structure as well as chemical and physical properties of the
hoop-shaped cyclic benzenoid. The compounds were found to be
stable and aromatic, and luminescent (1 and 5). This last property
is intriguing in view of the recent reports on luminescent CNT.19
Finally, the bifunctional nature of compounds (cf. 1) suggests their
use as linkers in a metal/fullerene alternating polymer20 through
formation of η5-metal fullerene complexes.21
(20) Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.; Nakamura,
E. Nature 2002, 419, 702.
(21) (a) Sawamura, M.; Kuninobu, Y.; Nakamura, E. J. Am. Chem. Soc. 2000,
122, 12407. (b) Sawamura, M.; Kuninobu, Y.; Toganoh, M.; Matsuo, Y.;
Yamanaka, M.; Nakamura, E. J. Am. Chem. Soc. 2002, 124, 9354.
JA029915Z
9
J. AM. CHEM. SOC. VOL. 125, NO. 10, 2003 2835