Synthesis of 2,2-Disubstituted-1,1-difluoro-1-alkenes
and sodium chlorodifluoroacetate with carbonyl compounds.10
However, this route was useful only for aldehydes and poly-
fluorinated ketones to obtain the corresponding 1,1-difluoro-
alkenes and was unsuccessful for nonactivated ketones. The
reaction between nonstabilized alkylidene triphenylphosphorane
and halodifluoromethanes has been found to be a useful
alternative to the above reaction but was not practical for
nonfluorinated ketones. Reagents such as tris(dimethylamino)-
phosphine were required in the Wittig reaction with dibromodi-
fluoromethane to effect this conversion.11 Recently, 1,1-
difluoroalkenes were synthesized using the Wittig method in
moderate yield from in situ generated 1,1-difluoromethylene-
phosphorus ylides [generated from (CF3)2Hg/NaI and a suitable
phosphine] with aldehydes and ketones.12 The synthesis of 1,1-
difluoroalkenes by Wittig-Horner-Emmons chemistry is also
known, where the reaction of diethyl 2-oxo-1,1-difluoropropyl-
phosphonate with Grignard reagents produced 1,1-difluoro-
alkenes.13 A more general entry to 1,1-difluoroalkenes by Wittig-
type chemistry was by the reaction of (diethylphosphonyl)difluoro-
methyllithium14 or lithium difluoromethyldiphenylphosphine
oxide with ketones and aldehydes.6d,e,15
SCHEME 1
1,1-difluoroalkenes were synthesized in two steps from 1-tri-
fluoromethylethenylsilane, which involved an SN2′ reaction of
1-trifluoromethylethenylsilane with nucleophiles to construct
2,2-difluoroethenylsilanes and the subsequent substitution of the
ethenylic silyl group with electrophiles to produce the desired
1,1-difluoroalkene.19 The synthesis of 1,1-difluoroalkenes by
electrophilic mono- or difluorination20 of the corresponding
precursor or by the thermal decomposition of R,R-difluoro-â-
lactones has also been reported.21 A facile synthesis of 1,1-
difluoroalkenes by a base-induced elimination of alkyl-sub-
stituted difluoromethyl sulfones [prepared by the reaction of
alkyl halides with in situ generated (benzenesulfonyl)difluo-
romethide] has recently been reported.22
We have recently developed an efficient room-temperature
methodology for the synthesis of R,â,â-trifluorostyrene from
the readily available environmentally friendly precursor HFC-
134a (CF3CH2F).23 Metalation of HFC-134a with LDA in the
presence of a zinc halide, followed by the Pd(0)-catalyzed
coupling of the in situ generated trifluoroethenylzinc reagent
with aryl iodides, produced R,â,â-trifluorostyrenes in very good
isolated yields (Scheme 1). This methodology was later applied
to a convenient general synthesis of R-halo-â,â-difluorostyrenes
(Cl, Br, I) via the corresponding R-halo-â,â-difluoroethenylzinc
reagents using commercially available precursors (Scheme 1).24
The R-halo-â,â-difluorostyrenes (Cl, Br, I) thus generated could
potentially be used as important synthons in organofluorine
chemistry because they can be functionalized at the halogen
site as well as the terminal olefin site to produce other
chemically or biologically important organofluorine compounds.
To functionalize the halogen site of the R-halo-â,â-difluo-
rostyrenes, the most attractive and simple pathway was a
palladium-catalyzed cross-coupling reaction with an aryl or
alkenylboronic acid to produce the corresponding 2,2-diaryl-
1,1-difluoroalkenes or 1,1-difluoro-2-aryl-1,3-dienes.25 The
general Wittig methodology discussed for the synthesis of 1,1-
difluoroalkenes was not suitable for the synthesis of 2,2-diaryl-
1,1-difluoroalkenes as a result of the poor reactivity of the diaryl
ketones in the Wittig reaction; even with the modified chemistry,
the only product thus synthesized was 2,2-diphenyl-1,1-difluo-
The alternative methods for the synthesis of 1,1-difluoro-
alkenes are generally based on metalation or related chemistry
involving the addition of stabilized difluoroethenylanions16 to
electrophiles or to aryl and alkenyl iodides by palladium
catalysis.17 1,1-Difluoroalkenes with a wide range of substituents
were readily synthesized from commercially available 2,2,2-
trifluoroethyl p-toluenesulfonate via boron-, copper-, zinc-, or
zirconium-mediated intermediates.18 In a recent report, various
(8) (a) St. Jean, D. J., Jr.; Molander, G. A. Functions incorporating two
halogens or a halogen and chalcogen. In ComprehensiVe Organic Functional
Group Transformations II; Katritzky, A. R., Taylor, J. K., Eds.; Elsevier:
Oxford, 2005; Vol. 4, pp 695-733. (b) Tozer, M. J.; Herpin, T. F.
Tetrahedron 1996, 52, 8619-8683. (c) Percy, J. M. Contemp. Org. Synth.
1995, 2, 251-268.
(9) (a) Burton, D. J.; Yang, Z.-Y.; Qiu, W. Chem. ReV. 1996, 96, 1641-
1715. (b) Burton, D. J. J. Fluorine Chem. 1999, 100, 177-199. (c)
Kennewell, P. D.; Westwood, R.; Westwood, N. J. Functions incorporating
two halogens or halogen and a chalcogen. In ComprehensiVe Organic
Functional Group Transformations; Katritzky, A. R., Meth-Cohn, A., Ress,
C. W., Eds.; Elsevier: Oxford, 1995; Vol. 4, pp 607-704.
(10) (a) Fugua, S. A.; Duncan, W. G.; Silverstein, R. M. J. Org. Chem.
1989, 30, 1027-1029. (b) Burton, D. J.; Herkes, F. E. J. Org. Chem. 1967,
32, 1311-1318.
(11) (a) Naae, D. G.; Burton, D. J. J. Fluorine Chem. 1971, 1, 123-
125. (b) Burton, D. J.; Wheaton, G. A. J. Org. Chem. 1983, 48, 917-926.
(c) Serafinowski, P. J.; Barnes, C. L. Tetrahedron 1996, 52, 7929-7938.
(d) Serafinowski, P. J.; Brown, C. A. Tetrahedron 2000, 56, 333-339.
(12) Nowak, I.; Robins, J. M. Org. Lett. 2005, 7, 721-724.
(13) (a) Tsai, H. J. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177,
2143. (b) Tsai, H. J. Phosphorus, Sulphur Silicon Relat. Elem. 1997, 122,
247-259.
(14) (a) Obayashi, M.; Itoh, E.; Matsui, K.; Kondo, K. Tetrahedron Lett.
1982, 23, 2323-2326. (b) Piettre, S. R.; Cabanas, L. Tetrahedron Lett.
1996, 37, 5881-5884.
(15) Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T.; Mathews, D. P.;
McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5571-5574.
(16) (a) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989,
30, 1641-1644. (b) Percy, J. M. Tetrahedron Lett. 1990, 31, 3931-3932.
(c) Patel, S. T.; Percy, J. M. J. Chem. Soc., Chem. Commun. 1992, 1477-
1478. (d) Bennet, A. J.; Percy, J. M.; Rock, M. H. Synlett 1992, 483-484.
(e) Lee, J.; Tsukasaki, M.; Snieckus, V. Tetrahedron Lett. 1993, 34, 415-
418. (f) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T. Tetrahedron
Lett. 1997, 38, 2853-2854.
(17) (a) Tellier, F.; Sauvetre, R.; Normant, J. F. J. Organomet. Chem.
1986, 303, 309-315. (b) Gillet, J. P.; Sauvetre, R.; Normant, J. F. Synthesis
1986, 538-543. (c) Tellier, F.; Sauvetre, R.; Normant, J. F. J. Organomet.
Chem. 1987, 328, 1-13. (d) Tellier, F.; Sauvetre, R.; Normant, J. F. J.
Organomet. Chem. 1987, 331, 281-298. (e) Ichikawa, J.; Minami, T.;
Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1992, 33, 3779-3782. (f)
Ichikawa, J.; Ikeura, C.; Minami, T. Synlett 1992, 739-740.
(18) Ichikawa, J. J. Fluorine Chem. 2000, 105, 257-263 (and references
cited therein).
(19) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800-
7805.
(20) (a) Mathews, D. P.; Miller, S. C.; Jarvi, E. T.; Sabol, J. S.; McCarthy,
J. R. Tetrahedron Lett. 1993, 34, 3057-3060. (b) Kim, K., II; McCarthy,
J. R. Tetrahedron Lett. 1996, 37, 3223-3226.
(21) (a) Ocampo, R.; Dolbier, W. R., Jr.; Paredes, R. J. Fluorine Chem.
1998, 88, 41-50. (b) Dolbier, W. R., Jr.; Ocampo, R. J. Org. Chem. 1995,
60, 5378-5379.
(22) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Angew. Chem.,
Int. Ed. 2004, 43, 5203-5206.
(23) (a) Anilkumar, R.; Burton, D. J. Tetrahedron Lett. 2002, 43,
2731-2733. (b) Raghavanpillai, A.; Burton, D. J. J. Org. Chem. 2004, 69,
7083-7091.
(24) (a) Anilkumar, R.; Burton, D. J. Tetrahedron Lett. 2002, 43,
6979-6982. (b) Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2005, 126,
833-841. (c) Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2004, 125,
561-566. (d) Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2005, 126,
457-463.
J. Org. Chem, Vol. 71, No. 1, 2006 195