10.1002/anie.201811041
Angewandte Chemie International Edition
COMMUNICATION
11520-11523; Angew. Chem. Int. Ed. 2014, 53, 11338-11341; d) J.
Zheng, P. Li, M. Gu, A. Lin, H. Yao, Org. Lett. 2017, 19, 2829-2832.
For other metals, see: a) S. Reddy Chidipudi, I. Khan, H. W. Lam, Angew.
Chem. 2012, 124, 12281-12285; Angew. Chem. Int. Ed. 2012, 51,
12115-12119; b) J. D. Dooley, S. Reddy Chidipudi, H. W. Lam, J. Am.
Chem. Soc. 2013, 135, 10829-10836; c) J. Nan, Z. Zuo, L. Luo, L. Bai,
H. Zheng, Y. Yuan, J. Liu, X. Luan, Y. Wang, J. Am. Chem. Soc. 2013,
135, 17306-17309; d) S. Gu, L. Luo, J. Liu, L. Bai, H. Zheng, Y. Wang,
X. Luan, Org. Lett. 2014, 16, 6132–6135; e) Z. Zuo, X. Yang, J. Liu, J.
Nan, L. Bai, Y. Wang, X. Luan, J. Org. Chem. 2015, 80, 3349–3356; f) H.
Zheng, L. Bai, J. Liu, J. Nan, Z. Zuo, L. Yang, Y. Wang, X. Luan, Chem.
Commun. 2015, 51, 3061-3064.
micromolar range, as detected by reduced activity of the
osteogenic marker alkaline phosphatase.[24] The most potent
compound 4f inhibited Hh-dependent osteogenesis with a half
maximal inhibitory concentration (IC50) of 3.6 ± 0.8 µM. To confirm
the Hh inhibition, compound 4f was additionally characterized in
an orthogonal, GLI-dependent reporter gene assay using Shh-
LIGHT2 cells.[25] In this assay, compound 4f inhibited the GLI-
dependent expression of the reporter firefly luciferase with an IC50
of 8.8 ± 0.5 µM.[14] Therefore, the chemotype defined by
spiropyrazolones defines a structurally novel class of Hedgehog
pathway inhibitors.
In summary, we demonstrated the first enantioselective
annulation of -arylidene pyrazolones through a formal C(sp3)-H
activation under very mild conditions enabled by highly variable
Rh(III)-Cpx catalysts. The method gave access to a set of
structurally diverse spiropyrazolones containing all-carbon
quaternary centers in high yields and with high enantioselectivity.
Preliminary biological investigation in different cellular assays led
to the identification of the spiropyrazolones as a novel class of
Hedgehog pathway inhibitors.
[4]
[5]
a) B. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308-1318; b) C. G.
Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 2016, 138, 3935-
3941; c) S. Motevalli, Y. Sokeirik, A. Ghanem, Eur. J. Org. Chem. 2016,
1459-1475; d) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer,
Chem. Rev. 2017, 117, 8908-8976.
[6]
[7]
a) B. Ye, N. Cramer, Science 2012, 338, 504-506; b) T. K. Hyster, L.
Knӧrr, T. R. Ward, T. Rovis, Science 2012, 338, 500-503.
For seminal reports by Cramer et al., see: a) B. Ye, N. Cramer, J. Am.
Chem. Soc. 2013, 135, 636-639; b) B. Ye, P. A. Donets, N. Cramer,
Angew. Chem. 2014, 126, 517-521; Angew. Chem. Int. Ed. 2014, 53,
507-511; c) B. Ye, N. Cramer Angew. Chem. 2014, 126, 8030-8033;
Angew. Chem. Int. Ed. 2014, 53, 7896-7899; d) B. Ye, N. Cramer, Synlett
2015, 26, 1490-1495; e) M. V. Pham, N. Cramer, Chem. Eur. J. 2016, 22,
2270-2273; f) Y. Sun, N. Cramer, Angew. Chem. 2017, 129, 370-373;
Angew. Chem. Int. Ed. 2017, 56, 364-367; g) Y. Sun, N. Cramer, Chem.
Sci. 2018, 9, 2981-2985. For other reports using Cramer’s chiral
CpxRh(III) complexes, see: h) S. R. Chidipudi, D. J. Burns, I. Khan, H. W.
Lam, Angew. Chem. 2015, 127, 14181-14185; Angew. Chem. Int. Ed.
2015, 54, 13975-13979; i) T. J. Potter, D. N. Kamber, B. Q. Mercado, J.
A. Ellman, ACS Catal. 2017, 7, 150-153. j) X. Chen, S. Yang, H. Li, B.
Wang, G. Song, ACS Catal. 2017, 7, 2392-2396; k) T. Li, C. Zhou, X.
Yan, J. Wang, Angew. Chem. 2018, 130, 4112-4116; Angew. Chem. Int.
Ed. 2018, 57, 4048-4052. For seminal reports by You et al., see: l) J.
Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2015, 137,
4880-4883; m) J. Zheng, W.-J. Cui, C. Zheng, S.-L. You, J. Am. Chem.
Soc. 2016, 138, 5242-5245; n) J. Zheng, S.-B. Wang, C. Zheng, S.-L.
You, Angew. Chem. 2017, 129, 4611-4615; Angew. Chem. Int. Ed. 2017,
56, 4540-4544.
Acknowledgements
This work was supported by the Max-Planck-Gesellschaft. We
thank Dr. Sonja Sievers and the compound management and
screening center (COMAS) for compound screening, Dr. Zhi-Jun
Jia (Caltech) and Dr. Saad Shaaban for helpful discussions. H. L.
is grateful to the Swiss National Science Foundation (SNSF) for
an Early Postdoc. Mobility fellowship (P2GEP2_168250). C.M.
thanks the FCI for a Liebig Fellowship and the Deutsche
Forschungsgemeinschaft (DFG) for support through the Cluster
of Excellence RESOLV (“Ruhr Explores Solvation”, EXC 1069).
This research was supported by the European Research Council
under the Seventh Framework Programme of the European
Union (FP7/2007-2013; ERC Grant 268309 to H.W.) and by the
Max Planck Society.
[8]
[9]
E. A. Trifonova, N. M. Ankudinov, A. A. Mikhaylov, D. A. Chusov, Y. V.
Nelyubina, D. S. Perekalin, Angew. Chem. 2018, 130, 7840-7844;
Angew. Chem. Int. Ed. 2018, 57, 7714-7718.
a) S. Satake, T. Kurihara, K. Nishikawa, T. Mochizuki, M. Hatano, K.
Ishihara, T. Yoshino, S. Matsunaga, Nat. Catal. 2018, 1, 585–591; b) L.
Lin, S. Fukagawa, D. Sekine, E. Tomita, T. Yoshino, S. Matsunaga,
Angew. Chem. 2018, 130, 12224-12228; Angew. Chem. Int. Ed. 2018,
57, 12048-12052.
Conflict of interest
The authors declare no conflict of interest.
[10] a) Z.-J. Jia, C. Merten, R. Gontla, C. G. Daniliuc, A. P. Antonchick, H.
Waldmann, Angew. Chem. 2017, 129, 2469-2474; Angew. Chem. Int. Ed.
2017, 56, 2429-2434; b) G. Shan, J. Flegel, H. Li, C. Merten, S. Ziegler,
A. P. Antonchick, H. Waldmann, Angew. Chem. 2018, DOI:
10.1002/ange.201809680; Angew. Chem. Int. Ed. 2018, DOI:
Keywords: C-H activation • Enantioselective catalysis •
Rhodium • Spiropyrazolones • Hedgehog pathway inhibitors
[1]
[2]
M. Gulías, J. L. Mascareñas, Angew. Chem. 2016, 128, 11164-11184;
Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
10.1002/anie.201809680.
a) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222; b) F. W.
Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31–
41; c) N. Kuhl, N. Schrꢀder, F. Glorius, Adv. Synth. Catal. 2014, 356,
1443-1460; d) G. Song, X. Li, Acc. Chem. Res. 2015, 48, 1007-1020; e)
J. Park, S. Chang, Chem. Asian. J. 2018, 13, 1089-1102; f) A. Peneau,
C. Guillou, L. Chabaud, Eur. J. Org. Chem. 2018, DOI:
10.1002/ejoc.201800298.
[11] a) M. Potowski, J. O. Bauer, C. Strohmann, A. P. Antonchick, H.
Waldmann, Angew. Chem. 2012, 124, 9650-9654; Angew. Chem. Int. Ed.
2012, 51, 9512-9516; b) M. Potowski, A. P. Antonchick, H. Waldmann,
Chem. Commun. 2013, 49, 7800-7802.
[12] For mild C-H activations, see: a) J. Wencel-Delord, T. Dröge, F. Liu, F.
Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; b) T. Gensch, M. N.
Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45,
2900-2936.
[3]
For Rh(III)-catalyzed C-H activation/spiroannulation reactions, see: a) A.
Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas, M. Gulías, J. Am.
Chem. Soc. 2014, 136, 7607-7610; b) S. Kujawa, D. Best, D. J. Burns,
H. W. Lam, Chem. Eur. J. 2014, 20, 8599-8602; c) M.-B. Zhou, R. Pi, M.
Hu, Y. Yang, R.-J. Song, Y. Xia, J.-H. Li, Angew. Chem. 2014, 126,
[13] a) S. R. Yetra, S. Mondal, S. Mukherjee, R. G. Gonnade, A. T. Biju,
Angew. Chem. 2016, 128, 276-280; Angew. Chem. Int. Ed. 2016, 55,
268-272; b) S. Mondal, S. Mukherjee, S. R. Yetra, R. G. Gonnade, A. T.
Biju, Org. Lett. 2017, 19, 4367-4370.
This article is protected by copyright. All rights reserved.