ACS Medicinal Chemistry Letters
Letter
regulation increases protein synthesis leading to cell death. Nat. Cell
Biol. 2013, 15, 481−490.
(12) Nakagawa, H.; Umemura, A.; Taniguchi, K.; Font-Burgada, J.;
Dhar, D.; Ogata, H.; Zhong, Z.; Valasek, M. A.; Seki, E.; Hidalgo, J.;
Koike, K.; Kaufman, R. J.; Karin, M. ER stress cooperates with
hypernutrition to trigger TNF-dependent spontaneous HCC develop-
ment. Cancer Cell 2014, 26, 331−343.
(13) Roussel, B. D.; Kruppa, A. J.; Miranda, E.; Crowther, D. C.;
Lomas, D. A.; Marciniak, S. J. Endoplasmic reticulum dysfunction in
neurological disease. Lancet Neurol. 2013, 12, 105−118.
(14) Kaser, A.; Flak, M. B.; Tomczak, M. F.; Blumberg, R. S. The
unfolded protein response and its role in intestinal homeostasis and
inflammation. Exp. Cell Res. 2011, 317, 2772−2779.
(15) Cao, S. S.; Kaufman, R. J. Targeting endoplasmic reticulum
stress in metabolic disease. Expert Opin. Ther. Targets 2013, 17, 437−
448.
(16) Scheuner, D.; Kaufman, R. J. The unfolded protein response: a
pathway that links insulin demand with β-cell failure and diabetes.
Endocr. Rev. 2008, 29, 317−333.
(17) Moenner, M.; Pluquet, O.; Bouchecareilh, M.; Chevet, E.
Integrated endoplasmic reticulum stress responses in cancer. Cancer
Res. 2007, 67, 10631−10634.
(18) Cross, B. C.; Bond, P. J.; Sadowski, P. G.; Jha, B. K.; Zak, J.;
Goodman, J. M.; Silverman, R. H.; Neubert, T. A.; Baxendale, I. R.;
Ron, D. The molecular basis for selective inhibition of unconventional
mRNA splicing by an IRE1-binding small molecule. Proc. Natl. Acad.
Sci. U.S.A. 2012, 109, E869−E878.
(19) Papandreou, I.; Denko, N. C.; Olson, M.; Van Melckebeke, H.;
Lust, S.; Tam, A.; Solow-Cordero, D. E.; Bouley, D. M.; Offner, F.;
Niwa, M. Identification of an Ire1alpha endonuclease specific inhibitor
with cytotoxic activity against human multiple myeloma. Blood 2011,
117, 1311−1314.
Funding
The authors gratefully acknowledge funding from the following
sources. Chemistry efforts at the University of Kansas
Specialized Chemistry Center were supported by NIH
U54HG005031 to J.A. KU NMR instrumentation was
supported by NIH S10RR024664 and NSF 0320648. High
throughput screening performed at the Conrad Prebys Center
for Chemical Genomics at the Sanford Burnham Medical
Research Institute was supported by NIH U54 HG00503.
R.J.K. acknowledges support from R03MH089782-01,
DK042394, DK088227, and HL052173. A.F. was supported
by DE019678 and the Wayne State University Fund for
Medical Research. Portions of this work were supported by
shared resources from the NCI Cancer Center grant
5P30CA030199.
Notes
The authors declare no competing financial interest.
ABBREVIATIONS
■
ATF4, activating transcription factor 4; CHO, Chinese hamster
ovary; CHOP, C/EBP-homologous protein; DTT, dithiothrei-
tol; ER, endoplasmic reticulum; ERCC1, excision repair cross-
complementation group 1; GADD34, growth and DNA
damage 34; GSH, glutathione; HTS, high throughput screen;
IP, intraperitoneal; IV, intravenous; KO, knockout; MEF,
murine embryonic fibroblast; OSCC, oral squamous cell
carcinoma; PAMPA, parallel artificial membrane permeability
assay; PCR, polymerase chain reaction; SAR, structure−activity
relationship; UPR, unfolded protein response; UV, ultraviolet;
WT, wildtype; XBP1, X-box binding protein 1
(20) Axten, J. M.; Medina, J. s. R.; Feng, Y.; Shu, A.; Romeril, S. P.;
Grant, S. W.; Li, W. H. H.; Heerding, D. A.; Minthorn, E.; Mencken,
T. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl) phenyl] acetyl}-
2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
(GSK2606414), a potent and selective first-in-class inhibitor of protein
kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med.
Chem. 2012, 55, 7193−7207.
REFERENCES
■
(1) Rutkowski, D. T.; Kaufman, R. J. A trip to the ER: coping with
stress. Trends Cell Biol. 2004, 14, 20−28.
(2) Schroder, M.; Kaufman, R. J. The mammalian unfolded protein
̈
(21) D’Arcy, P.; Brnjic, S.; Olofsson, M. H.; Fryknas, M.; Lindsten,
̈
response. Annu. Rev. Biochem. 2005, 74, 739−789.
K.; De Cesare, M.; Perego, P.; Sadeghi, B.; Hassan, M.; Larsson, R.
Inhibition of proteasome deubiquitinating activity as a new cancer
therapy. Nat. Med. 2011, 17, 1636−1640.
(3) Kaufman, R. J. Stress signaling from the lumen of the
endoplasmic reticulum: coordination of gene transcriptional and
translational controls. Genes Dev. 1999, 13, 1211−1233.
(4) Bernales, S.; Papa, F. R.; Walter, P. Intracellular signaling by the
unfolded protein response. Annu. Rev. Cell Dev. Biol. 2006, 22, 487−
508.
(22) Boyce, M.; Bryant, K. F.; Jousse, C.; Long, K.; Harding, H. P.;
Scheuner, D.; Kaufman, R. J.; Ma, D.; Coen, D. M.; Ron, D. A selective
inhibitor of eIF2α dephosphorylation protects cells from ER stress.
Science 2005, 307, 935−939.
(5) Calfon, M.; Zeng, H.; Urano, F.; Till, J. H.; Hubbard, S. R.;
Harding, H. P.; Clark, S. G.; Ron, D. IRE1 couples endoplasmic
reticulum load to secretory capacity by processing the XBP-1 mRNA.
Nature 2002, 415, 92−96.
(6) Acosta-Alvear, D.; Zhou, Y.; Blais, A.; Tsikitis, M.; Lents, N. H.;
Arias, C.; Lennon, C. J.; Kluger, Y.; Dynlacht, B. D. XBP1 controls
diverse cell type-and condition-specific transcriptional regulatory
networks. Mol. Cell 2007, 27, 53−66.
(7) Hetz, C. The unfolded protein response: controlling cell fate
decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012,
13, 89−102.
(8) Marciniak, S. J.; Yun, C. Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.;
Jungreis, R.; Nagata, K.; Harding, H. P.; Ron, D. CHOP induces death
by promoting protein synthesis and oxidation in the stressed
endoplasmic reticulum. Genes Dev. 2004, 18, 3066−3077.
(9) Matsumoto, M.; Minami, M.; Takeda, K.; Sakao, Y.; Akira, S.
Ectopic expression of CHOP (GADD153) induces apoptosis in M1
myeloblastic leukemia cells. FEBS Lett. 1996, 395, 143−147.
(10) Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in
endoplasmic reticulum stress. Cell Death Differ. 2003, 11, 381−389.
(11) Han, J.; Back, S. H.; Hur, J.; Lin, Y.-H.; Gildersleeve, R.; Shan, J.;
Yuan, C. L.; Krokowski, D.; Wang, S.; Hatzoglou, M.; Kilberg, M. S.;
Sartor, M. A.; Kaufman, R. J. ER-stress-induced transcriptional
(23) Fribley, A. M.; Cruz, P. G.; Miller, J. R.; Callaghan, M. U.; Cai,
P.; Narula, N.; Neubig, R. R.; Showalter, H. D.; Larsen, S. D.;
Kirchhoff, P. D.; Larsen, M. J.; Burr, D. A.; Schultz, P. J.; Jacobs, R. R.;
Tamayo-Castillo, G.; Ron, D.; Sherman, D. H.; Kaufman, R. J.
Complementary cell-based high-throughput screens identify novel
modulators of the unfolded protein response. J. Biomol. Screening 2011,
16, 825−35.
(24) Hetz, C.; Chevet, E.; Harding, H. P. Targeting the unfolded
protein response in disease. Nat. Rev. Drug Discovery 2013, 12, 703−
719.
(25) Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.
M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor
that targets both Raf and VEGF and PDGF receptor tyrosine kinase
signaling. Mol. Cancer Ther. 2008, 7, 3129−3140.
(26) Smalley, K. S.; Xiao, M.; Villanueva, J.; Nguyen, T. K.; Flaherty,
K. T.; Letrero, R.; Van Belle, P.; Elder, D. E.; Wang, Y.; Nathanson, K.
L.; Herlyn, M. CRAF inhibition induces apoptosis in melanoma cells
with non-V600E BRAF mutations. Oncogene 2009, 28, 85−94.
(27) Magnaghi, P.; D’Alessio, R.; Valsasina, B.; Avanzi, N.; Rizzi, S.;
Asa, D.; Gasparri, F.; Cozzi, L.; Cucchi, U.; Orrenius, C.; Polucci, P.;
Ballinari, D.; Perrera, C.; Leone, A.; Cervi, G.; Casale, E.; Xiao, Y.;
Wong, C.; Anderson, D. J.; Galvani, A.; Donati, D.; O’Brien, T.;
1282
dx.doi.org/10.1021/ml5003234 | ACS Med. Chem. Lett. 2014, 5, 1278−1283