Transition Metal Stannyl Complexes, 12
FULL PAPER
¯
Ph2PCH2CH2SnMe3 was added, resulting in a color change to yel-
X-ray Structure Analysis of : Triclinic, space group P1, a ϭ
low-brown. On stirring for 16 h, the color of the reaction mixture 1241.42(1), b ϭ 1280.91(2), c ϭ 1578.98(3) pm, α ϭ 66.396(1), β ϭ
became lighter. All volatiles were removed in vacuo after filtration
69.796(1), γ ϭ 66.749(1)°, V ϭ 2060.91·106(3) pm3, dcalcd. ϭ 1.655
through glass wool, and the remaining slightly oily solid was g cmϪ3 for Z ϭ 2. F(000) ϭ 1000, µ(Mo-Kα) ϭ 4.690 mmϪ1, λ ϭ
washed twice at 0°C with 3 ml of pentane each. After drying,
was obtained as a beige powder (210 mg, 69%).
71.073 pm, T ϭ 302 K, crystal size ϭ 0.5 ϫ 0.4 ϫ 0.25 mm. A
crystal was sealed in a glass capillary and mounted on a Siemens
SMART diffractometer with a CCD area detector. A hemisphere
of data was collected by a combination of three sets of exposures
(17343 reflections). Each set had a different angle for the crystal,
and each exposure took 15 s and covered 0.3° in ω (2.9° Յ 2Θ Յ
60.1°). The crystal-to-detector distance was 3.85 cm. The data were
corrected for polarization and Lorentz effects, and an empirical
absorption correction (SADABS) was applied (11897 unique reflec-
tions). The structure was solved by the Patterson method
(SHELS86). Refinement was carried out with the full-matrix least-
squares method based on F2 (SHELXL93) with anisotropic ther-
mal parameters for all non-hydrogen atoms. Hydrogen atoms were
inserted in calculated positions and refined riding with the corre-
sponding atom. Refinement converged at R1 ϭ 0.0595 [for 1847
reflections with I > 2σ(I)], wR2 ϭ 0.1344 {w ϭ [σ2(Fo)2 ϩ (0.0·x
2
31P NMR (101.250 MHz, C6D6): δ ϭ 55.9 (d, JPPtP ϭ 7.3 Hz,
2
1JPtP ϭ 2152.2 Hz, JSnP ϭ 108.6 Hz), 27.9 (d, JPPtP ϭ 7.3 Hz,
2
1JPtP ϭ 2065.5 Hz, J119SnPtP ϭ 1726.2 Hz, 2J117SnPtP ϭ 1696.8 Hz,
3JSnCCP ϭ 213.6 Hz). Ϫ 119Sn NMR (93.276 MHz, C6D6): δ ϭ
2
147.2 (dd, J119SnPtP ϭ 1732.1 Hz, J119SnP ϭ 111.9 Hz), Ϫ29.5 (d,
3J119SnCCP ϭ 218.7 Hz). Ϫ 13C NMR (62.90 MHz, [D8]toluene):
δ ϭ Ϫ11.7 (dd, trans-2JPPtC ϭ 82.9 Hz, cis-2JPPtC ϭ 7.6 Hz,
3
2
PtCH3), Ϫ9.6 (s, SnCH3), Ϫ6.5 (d, JPPtSnC ϭ 8.2 Hz, JPtSnC
ϭ
78.5 Hz, SnCH3), 5.8 (s, br., SnCH2), 6.1 (d, JPC ϭ 13.1 Hz,
SnCH2), 25.4 (d, br., 1JPC ϭ 12.0 Hz, PCH2), 39.4 (dd, 1JPC ϭ 39.2
Hz, JPC ϭ 8.7 Hz, PCH2). Ϫ 1H NMR (250.130 MHz, [D8]tol-
2
uene): δ ϭ Ϫ0.11 (s, JSnCH ϭ 51.3 Hz, 9 H, SnCH3), 0.55 (s,
2JSnCH ϭ 41.5 Hz, SnCH3, 6H), 0.65 (d, 3JPPtCH ϭ 6.1 Hz, PtCH3),
0.71Ϫ 0.95 (m, SnCH2), 1.44Ϫ1.52 (m, 2J117/119SnCH ഠ 59 Hz, 2 H,
SnCH2), 2.03Ϫ2.12 (m, PCH2), 2.48Ϫ2.61 (m, PCH2, 2 H),
6.98Ϫ7.75 (m, C6H5).
P)2 ϩ x·P]Ϫ1, where P ϭ (Fo2 ϩ 2Fc )/3}; final GOF ϭ 0.511. The
2
¯
Ϫ3
final difference map showed no peak larger than ϩ2.008 e
and
¯
Ϫ3 [21]
no hole larger than Ϫ1.243 e
.
Preparation of (Bu3SnCH2CH2Ph2P)Pt[PPh2CH2CH2SnBu2-
(PtϪSn)](Bu) ( ): The reaction was carried out in benzene as
described for , using 160 mg (0.22 mmol) of (Ph3P)2Pt(C2H4) and
227 mg (0.45 mmol) of Ph2PCH2CH2SnBu3. Removal of all vol-
atiles in vacuo resulted in a yellow oil (consisting of in about 90%
yield according to the 31P-NMR spectrum). By washing the oil
twice with 8 ml of pentane each and drying in vacuo, a yellow
powder was obtained that contained and only traces of impurities
according to the 31P-NMR spectrum. Ϫ 31P NMR (101.25 MHz,
[1]
Part 11: U. Schubert, S. Grubert, Organometallics
, 15,
4707.
[2]
[3]
[4]
[5]
U. Schubert, Angew. Chem.
, 106, 435; Angew. Chem. Int.
Ed. Engl.
G. Butler , C. Eaborn, A. J. Pidcock, Organomet. Chem.
181, 47.
T. A. K.Al-Allaf, C. Eaborn, K. Kundu, A. J. Pidcock, J. Chem.
, 33, 419.
,
Soc., Chem. Commun.
, 55.
2
1
G. Butler, C. Eaborn, A. J. Pidcock, Organomet. Chem.
185, 367.
,
C6D6): δ ϭ 53.2 (d, JPPtP ϭ 9.3 Hz, JPtP ϭ 1899.5 Hz,
2
1
J117/119SnP ϭ 110.2 Hz), 27.9 (d, JPPtP ϭ 9.3 Hz, JPtP ϭ 2097.2
[6]
[7]
C. Eaborn, K. Kundu, A. Pidcock, J. Chem. Soc.
, 1223.
2
2
3
Hz, J119SnPtP ϭ 1671.2 Hz, J117SnPtP ϭ 1596.7 Hz, J119SnCCP
ϭ
B. Cetinkaya, M. F. Lappert, J. McMeeking, D. E. Palmers, J.
185.6 Hz, J117SnCCP ϭ 178.2 Hz). Ϫ 119Sn NMR (93.276 MHz,
3
Chem. Soc., Dalton Trans.
, 1202.
[8]
[9]
C6D6): δ ϭ 175.8 (dd, 2J119SnPtP ϭ 1673.4 Hz, J119SnP ϭ 111.9 Hz),
H. Werner, O. Gevert, P. Haquette, Organometallics
, 16,
803.
Ϫ4.8 (d, JPCC119Sn ϭ 185.7 Hz). Ϫ 1H NMR (250.130 MHz,
3
M. J. Auburn, R. D. Holmes Smith, S. R. Stobart, J. Am. Chem.
C6D6): δ ϭ 0.75Ϫ1.96 (complex overlapping multiplets of butyl
groups and SnCH2), 2.20Ϫ2.51 (m, PCH2), 2.65Ϫ2.80 (m, PCH2)
6.99Ϫ7.90 (m, C6H5).
Soc.
, 106, 1314.
[10]
[11]
C. Müller, U. Schubert, Chem. Ber.
, 124, 2181.
U. Schubert, S. Grubert, U. Schulz, S. Mock, Organometallics
, 11, 3165.
[12]
[13]
Preparation
of
(PhMe2SnCH2CH2Ph2P)Pt[PPh2CH2-
B. P. Buffin, M. J. Poss, A. M. Arif, T. G. Richmond, Inorg.
CH2SnMe2(PtϪSn)](Ph) ( ): An amount of 123 mg (0.16 mmol)
of (Ph3P)2Pt(C2H4) and 144 mg (0.16 mmol) of
Ph2PCH2CH2SnMe2Ph was treated as described above. After re-
moval of all volatiles, the yellow oil was analyzed by multinuclear
NMR which indicated the almost quantitative formation of ac-
cording to 31P NMR. Ϫ 31P NMR (101.250 MHz, C6D6): δ ϭ 52.8
Chem.
, 32, 3805.
H. Gilges, U. Schubert, J. Organomet. Chem.
Murikami, T. Yoshida, Y. Ito, Organometallics
M. Murikami, T.Yoshida, Y. Ito, Chem. Lett.
, 548, 57; M.
, 13, 2900;
, 13.
[14]
[15]
[16]
H. Weichmann, J. Organomet. Chem.
, 238, C49.
P. E. Garrou, P. E. Chem. Rev. , 81, 229.
E. Carmona, E. Gutierrez-Puebla, J. M. Marin, A. Monge, M.
Paneque, M. L. Poveda, C. Ruiz, J. Am. Chem. Soc.
111, 2883.
,
2
1
(d, JPPtP ϭ 11.0 Hz, JPtP ϭ 2116.0 Hz, J117/119SnP ϭ 104.1 Hz),
2
1
2
[17]
[18]
24.4 (d, JPPtP ϭ 11.0 Hz, JPtP ϭ 2046.2 Hz, J119SnPtP ϭ 1572,3
H. Azizian, K. R. Dixon, C. Eaborn, A. Pidcock, N. M. Shuaib,
Hz, J117SnPtP ϭ 1503.7 Hz, J119/117SnCCP ϭ 200.0 Hz). Ϫ 119Sn
J. Vinaixa, J. Chem. Soc.
, 1020.
2
3
NMR (93.276 MHz, C6D6): δ ϭ 161.2 (dd 2J119SnPtP ϭ 1572.9 Hz,
Comprehensive Organometallic Chemistry, vol. 9 (Eds.: E. W.
Abel, F. G. A. Stone, G. Wilkinson), Pergamon Press, Oxford,
, p. 454.
J
119SnP ϭ 104.4 Hz) Ϫ25.5 (d, 3J119SnCCP ϭ 208.0 Hz). Ϫ 13C NMR
[19]
[20]
[21]
(62.90 MHz, C6D6):
δ ϭ Ϫ11.1 [s, Sn(CH3)2Ph], Ϫ7.4 [d,
H. C. Clark, G. Ferguson, M. J. Hampden-Smith, H. Ruegger,
2
2
3JPPtSnC ϭ 6.9 Hz, JPtSnC ϭ 74.9 Hz, Sn(CH3)2], 3.7 (d, JPCC
ϭ
B. L. Ruhl, Can. J. Chem.
, 66, 3120.
7.4 Hz, SnCH2), 6.6 (d, 2JPCC ϭ 16.2, SnCH2), 25.4 (d, br., 1JPC ϭ
18.5 Hz, PCH2) 37.6 (dd, JPC ϭ 38.4 Hz, JPC ϭ 8.8 Hz, PCH2),
H. Weichmann, G. Quell, A. Tzschach, Z. Anorg. Allg. Chem.
, 503, 7.
1
Crystallographic data (excluding structure factors) for the struc-
ture reported in this paper have been deposited with the Cam-
bridge Crystallographic Data Centre. Copies of the data can be
obtained free of charge on application to CCDC, 12 Union
Road, Cambridge C82 1EZ, UK [fax: int. code ϩ(1223)336-
033; e-mail: deposit@ccdc.cam.ac.uk] quoting the depository
number CCDC-101015.
121.9Ϫ156.6 (C6H5, no assignment possible due to different phenyl
groups and Pt satellites). Ϫ 1H NMR (250.13 MHz, C6D6): δ ϭ
3
0.04 (s, 2JSnCH ϭ 53.0 Hz, 6 H, SnCH3), 0.36 (s, br, JPtSnCH ϭ 8.1
Hz, 6 H, SnCH3), 0.58Ϫ0.73 (m, SnCH2), 1.05Ϫ1.19 (m, SnCH2),
2.09Ϫ2.21 (m, 2 H, PCH2), 2.53Ϫ2.67 (m, 2 H, PCH2), 6.87Ϫ6.98
(m, 5 H, PtC6H5), 7.10Ϫ7.86 (m, C6H5).
[98011]
Eur. J. Inorg. Chem.
, 897Ϫ903
903