B. Westermann et al. / Tetrahedron Letters 45 (2004) 5983–5986
5985
t-BuO
O
OR
SePh
OBn
O
O
O
O
1: mCPBA, KOH
82 %
LHMDS
N
DtBAD
N
N
t-BuO
N
H
N
2: NaH, BnBr
86 %
72 %
(4 : 1)
CO2Et
CO2Et
CO2Et
11
7a
9 (R = H)
10 (R = Bn)
O
t-BuO
O
O
NHPhe
O
1: CF3COOH
NHPhe
O
1: H2, Pd/C
O
PheHN
N
N
2: H2, Pt/C
3: NAc-PheOH
t-BuO
N
H
N
2: RuCl3, NaIO4
3: H2N-PheOEt
CO2Et
51 %
13
CO2Et
68 %
12
Scheme 4.
References and notes
O
O
N
O
O
OH
resin
O
1. This work has been carried out mainly at the University of
Paderborn, Germany.
2. Gante, J. Angew. Chem. 1994, 106, 1780–1802; Angew.
Chem., Int. Ed. Engl. 1994, 33, 1699–1720.
3. Giannis, A.; Kolter, T. Angew. Chem. 1993, 105, 1303–
1326; Angew. Chem., Int. Ed. Engl. 1993, 32, 1244–1267.
4. Hruby, V. Biopolymers 1997, 43, 219–266.
5. Hanessian, S.; McNaughton-Smith, G.; Lombart, H. G.;
Lubell, W. D. Tetrahedron 1997, 53, 12789–12854, and
references cited therein.
N
15, py, CH2Cl2
+
17
N
OEt
-
OEt
O
Cl
O
PF6
RuCl3
NaIO4
N
9
9
14
CIP
16
O
O
OTHP
OTHP
15, 16
py, CH2Cl2
N
N
19
6. Belvisi, L.; Bernardi, A.; Manzoni, L.; Potenzy, D.;
Scolastico, C. Eur. J. Org. Chem. 2000, 12789–12854.
7. Sun, H.; Moeller, K. D. Org. Lett. 2001, 4, 1547–1550.
OH
O
O
O
a: DHP
b: LiOH
resin
18
€
8. Maison, W.; Kuntzer, D.; Grohs, D. Synlett 2002, 1795–
OH
1798.
€
O
9. Wuthrich, K. Nature Struct. Biol. 2001, 8, 923–925.
10. Kim, K.; Dumas, J. P.; Germanas, J. P. J. Org. Chem.
1996, 61, 3138–3144.
Wang resin
15
11. Curran, T. P.; McEnaney, P. M. Tetrahedron Lett. 1995,
36, 191–194.
Scheme 5.
12. Sato, K.; Nagai, U. J. Chem. Soc., Perkin Trans. 1 1986,
1231–1234 (an early and prominent example).
13. Westermann, B.; Gedrath, I. Synlett 1996, 665–666.
14. Diedrichs, N.; Krelaus, R.; Gedrath, I.; Westermann, B.
Can. J. Chem. 2002, 80, 686–691.
15. Tiecco, M. Electrophilic Selenium, Selenocyclizations. In:
Topics Curr. Chem.; Springer: Berlin, 2000; Vol. 208, and
references cited therein.
16. Procedure for the synthesis of (3S,8aS)-7a: Lactam 6a
(279 mg, 1.2 mmol) was dissolved in acetonitrile (10 mL)
and stirred with silica gel (0.8 g). A solution of PhSeBr
(293 mg, 1.2 mmol) in acetonitrile (10 mL) was added
dropwise over the period of 1.5 h. Stirring was continued
for 1 d, upon which the solution was filtered, extracted
with dichloromethane and washed with sat. aqueous
sodium bicarbonate. Extracting of the aqueous phase with
dichloromethane, combining the organic phases, drying
over sodium sulfate, evaporating of the solvent and
column chromatography on silica gel (petroleum/ethyl
Whereas attachment of 14 to the resin allows for the
incorporation of cis-configured dipeptides, attachment
of the resin to the carboxyl moiety of the bicyclic het-
erocycle 18 allows for the incorporation of a trans-
peptide. To apply the same methodology, the hydroxyl
group of 9 is protected as the THP ether and the ester is
saponified with LiOH. Subsequently, the corresponding
acid 18 is coupled to the Wang-resin (Scheme 5).
In summary, we have developed a synthesis of highly
substituted bicyclic lactams that can mimic either a
trans- or a cis-peptide bond. Both heterocycles can be
attached easily to a solid support, allowing for peptide
synthesis from the C- or the N-terminus.
acetate 1:1) led to crystalline 7a (320 mg, 68%). ½aꢀ )19.9
D
(c 1.25 in chloroform). 1H NMR (CDCl3): d ¼ 1:24 (t,
3H), 1.49–2.44 (m, 10H), 3.13 (dd, J ¼ 8:4 Hz,
J ¼ 12:6 Hz, 1H), 3.57 (dd, J ¼ 2:6 Hz, J ¼ 12:6 Hz,
1H), 4.18 (q, 2H), 4.37–4.45 (m, 1H), 7.15–7.31 (m, 3H),
7.56–7.60 (m, 2H). 13C NMR (CDCl3): d ¼ 14:6, 19.1,
27.3, 29.7, 30.8, 32.2, 36.0, 57.5, 62.3, 71.5, 126.8, 129.5,
Acknowledgements
This work has been supported by the Deutsche Fors-
chungsgemeinschaft and the Fonds der Chemischen
Industrie (grants to N.D. and I.K.)