Antibiotics 2020, 9, 182
10 of 11
4.
Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on Mechanisms of Action and
Resistance and Strategies to Counter Resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256.
5.
6.
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171.
Kato, T.; Yang, G.; Teo, Y.; Juskeviciene, R.; Perez-Fernandez, D.; Shinde, H.M.; Salian, S.; Bernet, B.;
Vasella, A.; Böttger, E.C.; et al. Synthesis and Antiribosomal Activities of 40-O-, 60-O-, 4”-O-, 40,60-O- and
4”,6”-O-Derivatives in the Kanamycin Series Indicate Differing Target Selectivity Patterns between the 4,5-
and 4,6-Series of Disubstituted 2-Deoxystreptamine Aminoglycoside Antibiotics. ACS Infect. Dis. 2015, 1,
7.
8.
9.
Chen, W.; Matsushita, T.; Shcherbakov, D.; Boukari, H.; Vasella, A.; Böttger, E.C.; Crich, D. Synthesis,
antiribosomal and antibacterial activity of 40-O-glycopyranosyl paromomycin aminoglycoside antibiotics.
MedChemComm 2014, 5, 1179–1187. [CrossRef]
Matsushita, T.; Chen, W.; Juskeviciene, R.; Teo, Y.; Shcherbakov, D.; Vasella, A.; Böttger, E.C.; Crich, D.
Influence of 40-O-Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. J. Am.
Chem. Soc. 2015, 137, 7706–7717. [CrossRef]
Sati, G.C.; Sarpe, V.A.; Furukawa, T.; Mondal, S.; Mantovani, M.; Hobbie, S.N.; Vasella, A.; Böttger, E.C.;
Crich, D.; Mantovani, M. Modification at the 20-Position of the 4,5-Series of 2-Deoxystreptamine
Aminoglycoside Antibiotics To Resist Aminoglycoside Modifying Enzymes and Increase Ribosomal Target
Selectivity. ACS Infect. Dis. 2019, 5, 1718–1730. [CrossRef]
10. Sonousi, A.; Sarpe, V.A.; Brilkova, M.; Schacht, J.; Vasella, A.; Böttger, E.C.; Crich, D. Effects of
the 1-N-(4-Amino-2S-hydroxybutyryl) and 60-N-(2-Hydroxyethyl) Substituents on Ribosomal Selectivity,
Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics. ACS Infect.
11. Herzog, I.M.; Feldman, M.; Eldar-Boock, A.; Satchi-Fainaro, R.; Fridman, M. Design of membrane targeting
tobramycin-based cationic amphiphiles with reduced hemolytic activity. MedChemComm 2013, 4, 120–124.
12. Fosso, M.Y.; Zhu, H.; Green, K.D.; Garneau-Tsodikova, S.; Fredrick, K. Tobramycin variants with enhanced
ribosome-targeting activity. ChemBioChem 2015, 16, 1565–1570. [CrossRef]
13. Ogbonnaya, E.C.; Eleazu, K.; Chukwuma, S.; Essien, U.N. Review of the mechanism of cell death resulting
from streptozotocin challenge in experimental animals, its practical use and potential risk to humans.
J. Diabetes Metab. Disord. 2013, 12, 60. [CrossRef]
14. Agarwal, M. Streptozotocin: Mechanisms of action—Proceedings of a Workshop Held on 21 June 1980,
Washington, Dc. FEBS Lett. 1980, 120, 1–3. [CrossRef]
15. Reusser, F. Mode of Action of Streptozotocin. J. Bacteriol. 1971, 105, 580–588. [CrossRef]
16. King, A.J.F. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [CrossRef]
17. Wang, Z.; Gleichmann, H. GLUT2 in pancreatic islets: Crucial target molecule in diabetes induced with
multiple low doses of streptozotocin in mice. Diabetes 1998, 47, 50–56. [CrossRef]
18. Schnedl, W.J.; Ferber, S.; Johnson, J.H.; Newgard, C.B. STZ transport and cytotoxicity. Specific enhancement
in GLUT2-expressing cells. Diabetes 1994, 43, 1326–1333. [CrossRef]
19. Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S. Relative importance of transport and alkylation
for pancreatic beta-cell toxicity of streptozotocin. Diabetol. 2000, 43, 1528–1533. [CrossRef]
20. Moertel, C.G.; Hanley, J.A.; Johnson, L.A. Streptozocin Alone Compared with Streptozocin plus Fluorouracil
in the Treatment of Advanced Islet-Cell Carcinoma. N. Engl. J. Med. 1980, 303, 1189–1194. [CrossRef]
21. Postma, P.W.; Lengeler, J.W.; Jacobson, G.R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems
of bacteria. Microbiol. Rev. 1993, 57, 543–594. [CrossRef]
22. Ammer, J.; Brennenstuhl, M.; Schindler, P.; Holtje, J.V.; Zahner, H. Phosphorylation of streptozotocin during
uptake via the phosphoenolpyruvate: Sugar phosphotransferase system in Escherichia coli. Antimicrob.
23. Lengeler, J. Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K 12 and
other sensitive bacteria. Arch. Microbiol. 1980, 128, 196–203. [CrossRef] [PubMed]
24. Bannister, B. Synthesis and Biological-Activities of some Analogs of Streptozotocin. J. Antibiot. 1972, 25,