Communications
Although it is known that the active ingredient of oxone,
times, and generally improves upon the yields obtained with
other oxidants.
potassium peroxymonosulphate, decomposes in aqueous
basic medium to generate singlet oxygen (Scheme 3),[20] to
the best of our knowledge this process has not been exploited
Received: December 28, 2005
Published online: March 20, 2006
Keywords: natural products · oxidation · oxone · singlet oxygen ·
.
syntheticmethods
[1] For a recent example, see X. Wang, J. A. Porco, Jr., Angew.
Chem. 2005, 117, 3127 – 3131; Angew. Chem. Int. Ed. 2005, 44,
3067 – 3071.
[2] For a recent example, see J. E. Baldwin, R. M. Adlington, V. W.-
W. Sham, R. Mµrquez, P. G. Bulger, Tetrahedron 2005, 61, 2353 –
2363.
[3] J. M. Berry, T. D. Bradshaw, I. Fichtner, R. Ren, C. H. Schwalbe,
G. Wells, E.-H. Chew, M. F. G. Stevens, A. D. Westwell, J. Med.
Chem. 2005, 48, 639 – 644.
[4] D. A. Casteel, Nat. Prod. Rep. 1999, 16, 55 – 73.
[5] See for example, Glutinosin C: X. Niu, S. Li, Q. Zhao, Z. Lin, H.
Sun, Y. Lu, L. Zhang, Q. Zheng, Tetrahedron Lett. 2002, 43,
5277 – 5280.
[6] See for example, halleridone and hallerone: a) V. Ravikanth, P.
Ramesh, P. V. Diwan, Y. Venkateswarlu, Biochem. Syst. Ecol.
2000, 28, 905 – 906; frondosin C: b) A. D. Patil, A. J. Freyer, L.
Killmer, P. Offen, B. Carte, A. J. Jurewiz, R. K. Johnson,
Tetrahedron 1997, 53, 5047 – 5060; elisabethol: c) A. Ata, R. G.
Kerr, C. E. Moya, R. S. Jacobs, Tetrahedron 2003, 59, 4215 – 4222.
[7] D. Magdziak, S. J. Meek, T. R. R. Pettus, Chem. Rev. 2004, 104,
1383 – 1429.
Scheme 3. Mechanism for the formation of para-peroxyquinols and
evidence that 1O2 is the reactive species from oxone.
[8] For early studies, see a) T. Matsuura, K. Omura, R. Nakashima,
Bull. Chem. Soc. Jpn. 1965, 38, 1358 – 1362; recent work: b) W.
Adam, H. Kiliç, Ch. R. Saha-Möller, Synlett 2002, 510 – 512.
[9] M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 351 –
371.
[10] R. M. Moriarty, O. Prakash, Org. React. 2001, 57, 327 – 415.
[11] B. F. Sels, D. E. De Vos, P. A. Jacobs, Angew. Chem. 2005, 117,
314 – 317; Angew. Chem. Int. Ed. 2005, 44, 310 – 313.
[12] M. C. Marcotullio, F. Epifano, M. Curini, Trends Org. Chem.
2003, 10, 21 – 34.
[13] Y. Shi, Acc. Chem. Res. 2004, 37, 488 – 496.
[14] M. C. Carreæo, M. Ribagorda, A. Somoza, A. Urbano, Angew.
Chem. 2002, 114, 2879 – 2881; Angew. Chem. Int. Ed. 2002, 41,
2755 – 2757.
[15] M. Costantini, F. Igersheim, L. Krumenacker, US 4612401, 1986;
[Chem. Abstr. 1986, 104, 129540].
from a synthetic point of view. In our case, it could be assumed
that the reactive 1O2 species, which is generated from an
excess of oxone in the presence of NaHCO3, would be the
species responsible for the oxidative de-aromatization of
para-alkyl phenols to para-peroxyquinols (Scheme 3). The
process involves a [4+2] cycloaddition[21] between 1O2 and
electron-rich para-alkyl phenols and gives rise initially to the
formation of a 1,4-endoperoxide, which immediately evolves
to the 4-hydroperoxy-2,5-cyclohexadienone as a result of its
unstable peroxyhemiacetal structure. The presence of water
seems to be essential for the success of this process, which is
consistent with the well-documented enhanced rate of
1
[4+2] cycloadditions involving O2 in such solvents.[22] More-
over, water could accelerate or facilitate the opening of the
peroxide–acetal intermediate to yield the required substrates.
This mechanistic pathway also accounts for the exclusive
formation of para-peroxyquinols, even when ortho analogues
could be formed upon oxidative de-aromatization of the
ortho-substituted phenols 1b, 1d, or 1 f. Finally, the presence
of singlet oxygen in the base-mediated decomposition of
oxone was confirmed by a trapping experiment with 9,10-
dimethylanthracene (Scheme 3), which afforded known endo-
peroxide 4 on reaction with oxone under the above-men-
tioned conditions.[23]
In conclusion, easily handled oxone provides an eco-
friendly, inexpensive and practical source of singlet oxygen
for the selective one-pot oxidative de-aromatization of para-
alkyl phenols to para-peroxy quinols and para-quinols in good
to excellent yields under very mild conditions. The current
method is experimentally simple, occurs in very short reaction
[16] S.-Y. Gao, S. Ko, Y.-L. Lin, R. K. Peddinti, C.-C. Liao,
Tetrahedron 2001, 57, 297 – 308.
[17] a) A. Nagakura, M. Sato, M. Kikuchi, T. Nakatsu, JP 02200631,
1990; b) W.-Ch. Hsu, S.-H. Keng, US 6063383, 2000; [Chem.
Abstr. 2000, 132, 352791].
[18] a) J. L. Bretꢀn, L. D. Llera, E. Navarro, J. Trujillo, Tetrahedron
1987, 43, 4447 – 4451; b) E. Navarro, S. J. Alonso, J. Boada, J.
Trujillo, M. J. Ayuso, A. Gutiꢁrrez Navarro, Fitoterapia 1992, 63,
251 – 254.
[19] P. Wipf, Y. Kim, J. Am. Chem. Soc. 1994, 116, 11678 – 11688.
[20] a) W. Adam, D. V. Kazakov, V. P. Kazakov, Chem. Rev. 2005,
105, 3371 – 3387; b) D. F. Evans, M. W. Upton, J. Chem. Soc.
Dalton Trans. 1985, 1151 – 1153; c) D. L. Ball, J. O. Edwards, J.
Am. Chem. Soc. 1956, 78, 1125 – 1129.
[21] a) J.-M. Aubry, Ch. Pierlot, J. Regaudy, R. Schmidt, Acc. Chem.
Res. 2003, 36, 668 – 675; b) W. Adam, M. Prein, Acc. Chem. Res.
1996, 29, 275 – 283.
[22] J. M. Aubry, B. Mandard-Cazin, M. Rougee, R. V. Bensasson, J.
Am. Chem. Soc. 1995, 117, 9159 – 9164.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2737 –2741